DEMO_febio_0020_vessel_balloon_inflate
Below is a demonstration for:
- Building geometry for a cylindrical vessel with hexahedral elements
- Defining the boundary conditions
- Coding the febio structure
- Running the model
- Importing and visualizing the displacement results
Contents
- Keywords
- Plot settings
- Control parameters
- Creating model boundary polygons
- Creating model boundary surfaces
- Joining node sets
- Defining the boundary conditions
- Define contact
- Defining the FEBio input structure
- Quick viewing of the FEBio input file structure
- Exporting the FEBio input file
- Running the FEBio analysis
- Import FEBio results
Keywords
- febio_spec version 4.0
- febio, FEBio
- vessel, cylinder, balloon
- prescribed displacement
- contact, sliding
- hexahedral elements, hex8
- tube, cylindrical
- static, solid, multistep
- hyperelastic, Ogden
- displacement logfile
- stress logfile
- Nodal displacement mapping
- Shell thickness specification
clear; close all; clc;
Plot settings
fontSize=20; faceAlpha1=0.8; markerSize=40; lineWidth=3;
Control parameters
% Path names defaultFolder = fileparts(fileparts(mfilename('fullpath'))); savePath=fullfile(defaultFolder,'data','temp'); % Defining file names febioFebFileNamePart='tempModel'; febioFebFileName=fullfile(savePath,[febioFebFileNamePart,'.feb']); %FEB file name febioLogFileName=[febioFebFileNamePart,'.txt']; %FEBio log file name febioLogFileName_disp=[febioFebFileNamePart,'_disp_out.txt']; %Log file name for exporting displacement febioLogFileName_strain=[febioFebFileNamePart,'_strain_out.txt']; %Log file name for exporting strain %Specifying geometry parameters vessel (mm) pointSpacing=1; radiusOuter1=6.5/2; radiusInner1=5.4/2; radiusOuter2=5.8/2; radiusInner2=4.7/2; vesselLength=40; contactInitialOffset=0.1; radiusBalloon=min([radiusInner1 radiusInner2])-contactInitialOffset; pointSpacingBalloon=pointSpacing/2; balloonExtraLength=pointSpacing/2; %Define applied bc's radialDisplacement=1; %radial displacement after touch radialDisplacementTotal=radialDisplacement+contactInitialOffset; %Total radial displacement %Material parameter set c1=1e-3; %Shear-modulus-like parameter m1=2; %Material parameter setting degree of non-linearity k_factor=100; %Bulk modulus factor k=c1*k_factor; %Bulk modulus % FEA control settings numTimeSteps=10; %Number of time steps desired max_refs=25; %Max reforms max_ups=0; %Set to zero to use full-Newton iterations opt_iter=10; %Optimum number of iterations max_retries=5; %Maximum number of retires dtmin=(1/numTimeSteps)/100; %Minimum time step size dtmax=1/numTimeSteps; %Maximum time step size symmetric_stiffness=0; runMode='external';% 'internal' or 'external' %Contact parameters contactPenalty=0.5; laugon=0; minaug=1; maxaug=10; fric_coeff=0; %Visualization parameters colorLimits_volumeRatio=[0.99 1.01];
Creating model boundary polygons
nRad=round((2*pi*max([radiusOuter1 radiusOuter2]))/pointSpacing); %Number of radial steps t=linspace(0,2*pi,nRad)'; %Angles t=t(1:end-1); %take away last which equals start v1_Outer=[-(vesselLength/2)*ones(size(t)) radiusOuter1*sin(t) radiusOuter1*cos(t)]; %Circular coordinates t=linspace(0,2*pi,nRad)'; %Angles t=t(1:end-1); %take away last which equals start v2_Outer=[(vesselLength/2)*ones(size(t)) radiusOuter2*sin(t) radiusOuter2*cos(t)]; %Circular coordinates t=linspace(0,2*pi,nRad)'; %Angles t=t(1:end-1); %take away last which equals start v1_Inner=[-(vesselLength/2)*ones(size(t)) radiusInner1*sin(t) radiusInner1*cos(t)]; %Circular coordinates t=linspace(0,2*pi,nRad)'; %Angles t=t(1:end-1); %take away last which equals start v2_Inner=[(vesselLength/2)*ones(size(t)) radiusInner2*sin(t) radiusInner2*cos(t)]; %Circular coordinates t=linspace(0,2*pi,nRad)'; %Angles t=t(1:end-1); %take away last which equals start v1_balloon=[-((vesselLength/2)+balloonExtraLength)*ones(size(t)) radiusBalloon*sin(t) radiusBalloon*cos(t)]; %Circular coordinates v2_balloon=[ ((vesselLength/2)+balloonExtraLength)*ones(size(t)) radiusBalloon*sin(t) radiusBalloon*cos(t)]; %Circular coordinates
Plotting model boundary polygons
cFigure; hold on; title('Model boundary polygons','FontSize',fontSize); plotV(v1_Outer,'r.-') plotV(v1_Inner,'g.-') plotV(v2_Outer,'b.-') plotV(v2_Inner,'y.-') plotV(v1_balloon,'c.-') plotV(v2_balloon,'k.-') axisGeom(gca,fontSize); drawnow;
Creating model boundary surfaces
controlStructLoft.numSteps=ceil(vesselLength./pointSpacing); controlStructLoft.closeLoopOpt=1; controlStructLoft.patchType='quad'; %Meshing outer surface [F1,V1,indStart1]=polyLoftLinear(v1_Outer,v2_Outer,controlStructLoft); %Meshing inner surface [F2,V2,indStart2]=polyLoftLinear(v1_Inner,v2_Inner,controlStructLoft); %Compose hexahedral elements indStart2=indStart2+size(V1,1); F2=F2+size(V1,1); E=[F1 F2]; V=[V1;V2]; [FE]=element2patch(E,[],'hex8'); indBoundary=tesBoundary(FE); Fb=FE(indBoundary,:); %Meshing balloon surface [Fs,Vs]=polyLoftLinear(v1_balloon,v2_balloon,controlStructLoft); Fs=fliplr(Fs); %Invert orientation [Fs,Vs]=subQuad(Fs,Vs,1);
Plotting model boundary surfaces
cFigure; hold on; title('Model boundary surfaces','FontSize',fontSize); gpatch(FE,V,'rw','k',0.5); patchNormPlot(FE,V); gpatch(F1,V,'bw'); patchNormPlot(F1,V); gpatch(F2,V,'gw'); patchNormPlot(F2,V); gpatch(Fs,Vs,'kw'); patchNormPlot(Fs,Vs); colormap(gca,gjet(4)); icolorbar; axisGeom(gca,fontSize); camlight headlight; drawnow;
Joining node sets
Fs=Fs+size(V,1); V=[V;Vs];
Defining the boundary conditions
The visualization of the model boundary shows colors for each side of the cube. These labels can be used to define boundary conditions.
%Define X supported node set bcSupportList_X=unique([indStart1(:);indStart2(:)]); %Node set part of selected face % %Define Y supported node set % bcSupportList_Y=unique(Fb(Cb==4,:)); %Node set part of selected face %Radial expansion prescribed displacement bcPrescribeList=(size(V,1)-size(Vs,1)+1):size(V,1); %Define presribed displacements [t,r,z] = cart2pol(V(bcPrescribeList,2),V(bcPrescribeList,3),V(bcPrescribeList,1)); [y2,z2,x2] = pol2cart(t,r+radialDisplacementTotal,z); Ux=x2-V(bcPrescribeList,1); Uy=y2-V(bcPrescribeList,2); Uz=z2-V(bcPrescribeList,3);
Visualizing boundary conditions. Markers plotted on the semi-transparent model denote the nodes in the various boundary condition lists.
cFigure; title('Boundary conditions','FontSize',fontSize); xlabel('X','FontSize',fontSize); ylabel('Y','FontSize',fontSize); zlabel('Z','FontSize',fontSize); hold on; gpatch(FE,V,'kw','k',0.5); gpatch(Fs,V,'kw','k',0.5); hl(1)=plotV(V(bcSupportList_X,:),'k.','MarkerSize',markerSize); hl(2)=gpatch(Fs,V,'rw','r',0.5); legend(hl,{'BC X support','BC prescribe'}); axisGeom(gca,fontSize); camlight headlight; drawnow;
Define contact
F_contact_primary=Fs; F_contact_secondary=F2;
Visualizing boundary conditions. Markers plotted on the semi-transparent model denote the nodes in the various boundary condition lists.
hf=cFigure; title('Boundary conditions','FontSize',fontSize); xlabel('X','FontSize',fontSize); ylabel('Y','FontSize',fontSize); zlabel('Z','FontSize',fontSize); hold on; gpatch(FE,V,'kw','none',0.5); h1(1)=gpatch(F_contact_primary,V,'gw','g',0.5); patchNormPlot(F_contact_primary,V); h1(2)=gpatch(F_contact_secondary,V,'rw','r',0.5); patchNormPlot(F_contact_secondary,V); legend(hl,{'Primary surface','Secondary surface'}); axisGeom(gca,fontSize); camlight headlight; drawnow;
Defining the FEBio input structure
See also febioStructTemplate and febioStruct2xml and the FEBio user manual.
%Get a template with default settings [febio_spec]=febioStructTemplate; %febio_spec version febio_spec.ATTR.version='4.0'; %Module section febio_spec.Module.ATTR.type='solid'; %Control section febio_spec.Control.analysis='STATIC'; febio_spec.Control.time_steps=numTimeSteps; febio_spec.Control.step_size=1/numTimeSteps; febio_spec.Control.solver.max_refs=max_refs; febio_spec.Control.solver.qn_method.max_ups=max_ups; febio_spec.Control.solver.symmetric_stiffness=symmetric_stiffness; febio_spec.Control.time_stepper.dtmin=dtmin; febio_spec.Control.time_stepper.dtmax=dtmax; febio_spec.Control.time_stepper.max_retries=max_retries; febio_spec.Control.time_stepper.opt_iter=opt_iter; %Material section materialName1='Material1'; febio_spec.Material.material{1}.ATTR.name=materialName1; febio_spec.Material.material{1}.ATTR.type='Ogden'; febio_spec.Material.material{1}.ATTR.id=1; febio_spec.Material.material{1}.c1=c1; febio_spec.Material.material{1}.m1=m1; febio_spec.Material.material{1}.c2=c1; febio_spec.Material.material{1}.m2=-m1; febio_spec.Material.material{1}.k=k; materialName2='Material2'; febio_spec.Material.material{2}.ATTR.name=materialName2; febio_spec.Material.material{2}.ATTR.type='Ogden'; febio_spec.Material.material{2}.ATTR.id=2; febio_spec.Material.material{2}.c1=c1; febio_spec.Material.material{2}.m1=m1; febio_spec.Material.material{2}.c2=c1; febio_spec.Material.material{2}.m2=-m1; febio_spec.Material.material{2}.k=k; %Mesh section % -> Nodes febio_spec.Mesh.Nodes{1}.ATTR.name='nodeSet_all'; %The node set name febio_spec.Mesh.Nodes{1}.node.ATTR.id=(1:size(V,1))'; %The node id's febio_spec.Mesh.Nodes{1}.node.VAL=V; %The nodel coordinates % -> Elements partName1='Part1'; febio_spec.Mesh.Elements{1}.ATTR.name=partName1; %Name of this part febio_spec.Mesh.Elements{1}.ATTR.type='hex8'; %Element type febio_spec.Mesh.Elements{1}.elem.ATTR.id=(1:1:size(E,1))'; %Element id's febio_spec.Mesh.Elements{1}.elem.VAL=E; %The element matrix partName2='Part2'; febio_spec.Mesh.Elements{2}.ATTR.name=partName2; %Name of this part febio_spec.Mesh.Elements{2}.ATTR.type='quad4'; %Element type febio_spec.Mesh.Elements{2}.elem.ATTR.id=size(E,1)+(1:1:size(Fs,1))'; %Element id's febio_spec.Mesh.Elements{2}.elem.VAL=Fs; %The element matrix % -> Surfaces surfaceName1='contactSurface1'; febio_spec.Mesh.Surface{1}.ATTR.name=surfaceName1; febio_spec.Mesh.Surface{1}.quad4.ATTR.id=(1:1:size(F_contact_primary,1))'; febio_spec.Mesh.Surface{1}.quad4.VAL=F_contact_primary; surfaceName2='contactSurface2'; febio_spec.Mesh.Surface{2}.ATTR.name=surfaceName2; febio_spec.Mesh.Surface{2}.quad4.ATTR.id=(1:1:size(F_contact_secondary,1))'; febio_spec.Mesh.Surface{2}.quad4.VAL=F_contact_secondary; % -> Surface pairs febio_spec.Mesh.SurfacePair{1}.ATTR.name='Contact1'; febio_spec.Mesh.SurfacePair{1}.primary=surfaceName1; febio_spec.Mesh.SurfacePair{1}.secondary=surfaceName2; % -> NodeSets nodeSetName1='bcSupportList_X'; febio_spec.Mesh.NodeSet{1}.ATTR.name=nodeSetName1; febio_spec.Mesh.NodeSet{1}.VAL=mrow(bcSupportList_X); nodeSetName2='bcPrescribeList'; febio_spec.Mesh.NodeSet{2}.ATTR.name=nodeSetName2; febio_spec.Mesh.NodeSet{2}.VAL=mrow(bcPrescribeList); %MeshDomains section febio_spec.MeshDomains.SolidDomain.ATTR.name=partName1; febio_spec.MeshDomains.SolidDomain.ATTR.mat=materialName1; febio_spec.MeshDomains.ShellDomain.ATTR.name=partName2; febio_spec.MeshDomains.ShellDomain.ATTR.mat=materialName2; febio_spec.MeshDomains.ShellDomain.shell_thickness=0.01; %-> Node data meshDataName_Ux='DisplacementData_X'; febio_spec.MeshData.NodeData{1}.ATTR.name=meshDataName_Ux; febio_spec.MeshData.NodeData{1}.ATTR.node_set=nodeSetName2; febio_spec.MeshData.NodeData{1}.ATTR.data_type='scalar'; febio_spec.MeshData.NodeData{1}.node.ATTR.lid=(1:numel(bcPrescribeList))'; febio_spec.MeshData.NodeData{1}.node.VAL=Ux(:); meshDataName_Uy='DisplacementData_Y'; febio_spec.MeshData.NodeData{2}.ATTR.name=meshDataName_Uy; febio_spec.MeshData.NodeData{2}.ATTR.node_set=nodeSetName2; febio_spec.MeshData.NodeData{2}.ATTR.data_type='scalar'; febio_spec.MeshData.NodeData{2}.node.ATTR.lid=(1:numel(bcPrescribeList))'; febio_spec.MeshData.NodeData{2}.node.VAL=Uy(:); meshDataName_Uz='DisplacementData_Z'; febio_spec.MeshData.NodeData{3}.ATTR.name=meshDataName_Uz; febio_spec.MeshData.NodeData{3}.ATTR.node_set=nodeSetName2; febio_spec.MeshData.NodeData{3}.ATTR.data_type='scalar'; febio_spec.MeshData.NodeData{3}.node.ATTR.lid=(1:numel(bcPrescribeList))'; febio_spec.MeshData.NodeData{3}.node.VAL=Uz(:); %Boundary condition section % -> Fix boundary conditions febio_spec.Boundary.bc{1}.ATTR.name='zero_displacement_x'; febio_spec.Boundary.bc{1}.ATTR.type='zero displacement'; febio_spec.Boundary.bc{1}.ATTR.node_set=nodeSetName1; febio_spec.Boundary.bc{1}.x_dof=1; febio_spec.Boundary.bc{1}.y_dof=0; febio_spec.Boundary.bc{1}.z_dof=0; % -> Prescribe boundary conditions febio_spec.Boundary.bc{2}.ATTR.name='prescibed_displacement_x'; febio_spec.Boundary.bc{2}.ATTR.type='prescribed displacement'; febio_spec.Boundary.bc{2}.ATTR.node_set=nodeSetName2; febio_spec.Boundary.bc{2}.dof='x'; febio_spec.Boundary.bc{2}.value.ATTR.lc=1; febio_spec.Boundary.bc{2}.value.ATTR.type='map'; febio_spec.Boundary.bc{2}.value.VAL=meshDataName_Ux; febio_spec.Boundary.bc{2}.relative=0; febio_spec.Boundary.bc{3}.ATTR.name='prescibed_displacement_y'; febio_spec.Boundary.bc{3}.ATTR.type='prescribed displacement'; febio_spec.Boundary.bc{3}.ATTR.node_set=nodeSetName2; febio_spec.Boundary.bc{3}.dof='y'; febio_spec.Boundary.bc{3}.value.ATTR.lc=1; febio_spec.Boundary.bc{3}.value.ATTR.type='map'; febio_spec.Boundary.bc{3}.value.VAL=meshDataName_Uy; febio_spec.Boundary.bc{3}.relative=0; febio_spec.Boundary.bc{4}.ATTR.name='prescibed_displacement_z'; febio_spec.Boundary.bc{4}.ATTR.type='prescribed displacement'; febio_spec.Boundary.bc{4}.ATTR.node_set=nodeSetName2; febio_spec.Boundary.bc{4}.dof='z'; febio_spec.Boundary.bc{4}.value.ATTR.lc=1; febio_spec.Boundary.bc{4}.value.ATTR.type='map'; febio_spec.Boundary.bc{4}.value.VAL=meshDataName_Uz; febio_spec.Boundary.bc{4}.relative=0; %Contact section febio_spec.Contact.contact{1}.ATTR.type='sliding-elastic'; febio_spec.Contact.contact{1}.ATTR.surface_pair=febio_spec.Mesh.SurfacePair{1}.ATTR.name; febio_spec.Contact.contact{1}.two_pass=1; febio_spec.Contact.contact{1}.laugon=laugon; febio_spec.Contact.contact{1}.tolerance=0.2; febio_spec.Contact.contact{1}.gaptol=0; febio_spec.Contact.contact{1}.minaug=minaug; febio_spec.Contact.contact{1}.maxaug=maxaug; febio_spec.Contact.contact{1}.search_tol=0.01; febio_spec.Contact.contact{1}.search_radius=0.1*sqrt(sum((max(V,[],1)-min(V,[],1)).^2,2)); febio_spec.Contact.contact{1}.symmetric_stiffness=0; febio_spec.Contact.contact{1}.auto_penalty=1; febio_spec.Contact.contact{1}.penalty=contactPenalty; febio_spec.Contact.contact{1}.fric_coeff=fric_coeff; %LoadData section % -> load_controller febio_spec.LoadData.load_controller{1}.ATTR.name='LC_1'; febio_spec.LoadData.load_controller{1}.ATTR.id=1; febio_spec.LoadData.load_controller{1}.ATTR.type='loadcurve'; febio_spec.LoadData.load_controller{1}.interpolate='LINEAR'; %febio_spec.LoadData.load_controller{1}.extend='CONSTANT'; febio_spec.LoadData.load_controller{1}.points.pt.VAL=[0 0; 1 1]; %Output section % -> log file febio_spec.Output.logfile.ATTR.file=febioLogFileName; febio_spec.Output.logfile.node_data{1}.ATTR.file=febioLogFileName_disp; febio_spec.Output.logfile.node_data{1}.ATTR.data='ux;uy;uz'; febio_spec.Output.logfile.node_data{1}.ATTR.delim=','; febio_spec.Output.logfile.element_data{1}.ATTR.file=febioLogFileName_strain; febio_spec.Output.logfile.element_data{1}.ATTR.data='E1'; febio_spec.Output.logfile.element_data{1}.ATTR.delim=','; febio_spec.Output.plotfile.compression=0;
Quick viewing of the FEBio input file structure
The febView function can be used to view the xml structure in a MATLAB figure window.
febView(febio_spec); %Viewing the febio file febView(febio_spec)
Exporting the FEBio input file
Exporting the febio_spec structure to an FEBio input file is done using the febioStruct2xml function.
febioStruct2xml(febio_spec,febioFebFileName); %Exporting to file and domNode
Running the FEBio analysis
To run the analysis defined by the created FEBio input file the runMonitorFEBio function is used. The input for this function is a structure defining job settings e.g. the FEBio input file name. The optional output runFlag informs the user if the analysis was run succesfully.
febioAnalysis.run_filename=febioFebFileName; %The input file name febioAnalysis.run_logname=febioLogFileName; %The name for the log file febioAnalysis.disp_on=1; %Display information on the command window febioAnalysis.runMode=runMode;%'internal'; [runFlag]=runMonitorFEBio(febioAnalysis);%START FEBio NOW!!!!!!!!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% --------> RUNNING/MONITORING FEBIO JOB <-------- 24-Jul-2023 10:42:55 FEBio path: /home/kevin/FEBioStudio/bin/febio4 # Attempt removal of existing log files 24-Jul-2023 10:42:55 * Removal succesful 24-Jul-2023 10:42:55 # Attempt removal of existing .xplt files 24-Jul-2023 10:42:55 * Removal succesful 24-Jul-2023 10:42:55 # Starting FEBio... 24-Jul-2023 10:42:55 Max. total analysis time is: Inf s * Waiting for log file creation 24-Jul-2023 10:42:55 Max. wait time: 30 s * Log file found. 24-Jul-2023 10:42:55 # Parsing log file... 24-Jul-2023 10:42:55 number of iterations : 4 24-Jul-2023 10:42:56 number of reformations : 4 24-Jul-2023 10:42:56 ------- converged at time : 0.1 24-Jul-2023 10:42:56 number of iterations : 7 24-Jul-2023 10:42:57 number of reformations : 7 24-Jul-2023 10:42:57 ------- converged at time : 0.2 24-Jul-2023 10:42:57 number of iterations : 6 24-Jul-2023 10:42:59 number of reformations : 6 24-Jul-2023 10:42:59 ------- converged at time : 0.3 24-Jul-2023 10:42:59 number of iterations : 6 24-Jul-2023 10:43:00 number of reformations : 6 24-Jul-2023 10:43:00 ------- converged at time : 0.4 24-Jul-2023 10:43:00 number of iterations : 4 24-Jul-2023 10:43:02 number of reformations : 4 24-Jul-2023 10:43:02 ------- converged at time : 0.5 24-Jul-2023 10:43:02 number of iterations : 4 24-Jul-2023 10:43:03 number of reformations : 4 24-Jul-2023 10:43:03 ------- converged at time : 0.6 24-Jul-2023 10:43:03 number of iterations : 4 24-Jul-2023 10:43:05 number of reformations : 4 24-Jul-2023 10:43:05 ------- converged at time : 0.7 24-Jul-2023 10:43:05 number of iterations : 5 24-Jul-2023 10:43:06 number of reformations : 5 24-Jul-2023 10:43:06 ------- converged at time : 0.8 24-Jul-2023 10:43:06 number of iterations : 5 24-Jul-2023 10:43:06 number of reformations : 5 24-Jul-2023 10:43:06 ------- converged at time : 24-Jul-2023 10:43:06 number of iterations : 5 24-Jul-2023 10:43:07 number of reformations : 5 24-Jul-2023 10:43:07 ------- converged at time : 1 24-Jul-2023 10:43:07 Elapsed time : 0:00:12 24-Jul-2023 10:43:07 N O R M A L T E R M I N A T I O N # Done 24-Jul-2023 10:43:07 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Import FEBio results
if runFlag==1 %i.e. a succesful run
Importing nodal displacements from a log file
dataStruct=importFEBio_logfile(fullfile(savePath,febioLogFileName_disp),0,1); %Access data N_disp_mat=dataStruct.data; %Displacement timeVec=dataStruct.time; %Time %Create deformed coordinate set V_DEF=N_disp_mat+repmat(V,[1 1 size(N_disp_mat,3)]);
Plotting the simulated results using anim8 to visualize and animate deformations
DN_magnitude=sqrt(sum(N_disp_mat(:,:,end).^2,2)); %Current displacement magnitude % Create basic view and store graphics handle to initiate animation hf=cFigure; %Open figure gtitle([febioFebFileNamePart,': Press play to animate']); title('Displacement magnitude [mm]','Interpreter','Latex') hp=gpatch(Fb,V_DEF(:,:,end),DN_magnitude,'k',1); %Add graphics object to animate hp.FaceColor='interp'; hp2=gpatch(Fs,V,'w','k',1); %A static graphics object axisGeom(gca,fontSize); colormap(gjet(250)); colorbar; caxis([0 max(DN_magnitude)]); axis(axisLim(V_DEF)); %Set axis limits statically camlight headlight; % Set up animation features animStruct.Time=timeVec; %The time vector for qt=1:1:size(N_disp_mat,3) %Loop over time increments DN_magnitude=sqrt(sum(N_disp_mat(:,:,qt).^2,2)); %Current displacement magnitude %Set entries in animation structure animStruct.Handles{qt}=[hp hp hp2]; %Handles of objects to animate animStruct.Props{qt}={'Vertices','CData','Vertices'}; %Properties of objects to animate animStruct.Set{qt}={V_DEF(:,:,qt),DN_magnitude,V_DEF(:,:,qt)}; %Property values for to set in order to animate end anim8(hf,animStruct); %Initiate animation feature drawnow;
Importing element stress from a log file
dataStruct=importFEBio_logfile(fullfile(savePath,febioLogFileName_strain),0,1);
%Access data
E_strain_mat=dataStruct.data;
E_strain_mat(isnan(E_strain_mat))=0;
Plotting the simulated results using anim8 to visualize and animate deformations
[CV]=faceToVertexMeasure(E,V,E_strain_mat(:,:,end)); % Create basic view and store graphics handle to initiate animation hf=cFigure; %Open figure gtitle([febioFebFileNamePart,': Press play to animate']); title('$\varepsilon_{1}$ [.]','Interpreter','Latex') hp=gpatch(Fb,V_DEF(:,:,end),CV,'k',1); %Add graphics object to animate hp.FaceColor='interp'; hp2=gpatch(Fs,V,'w','k',1); %A static graphics object axisGeom(gca,fontSize); colormap(gjet(250)); colorbar; caxis([min(E_strain_mat(:)) max(E_strain_mat(:))]); axis(axisLim(V_DEF)); %Set axis limits statically camlight headlight; % Set up animation features animStruct.Time=timeVec; %The time vector for qt=1:1:size(N_disp_mat,3) %Loop over time increments [CV]=faceToVertexMeasure(E,V,E_strain_mat(:,:,qt)); %Set entries in animation structure animStruct.Handles{qt}=[hp hp hp2]; %Handles of objects to animate animStruct.Props{qt}={'Vertices','CData','Vertices'}; %Properties of objects to animate animStruct.Set{qt}={V_DEF(:,:,qt),CV,V_DEF(:,:,qt)}; %Property values for to set in order to animate end anim8(hf,animStruct); %Initiate animation feature drawnow;
end
GIBBON www.gibboncode.org
Kevin Mattheus Moerman, [email protected]
GIBBON footer text
License: https://github.com/gibbonCode/GIBBON/blob/master/LICENSE
GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for image segmentation, image-based modeling, meshing, and finite element analysis.
Copyright (C) 2006-2023 Kevin Mattheus Moerman and the GIBBON contributors
This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.