DEMO_febio_0034_sphere_cone_slide_body_force

Below is a demonstration for:

Contents

Keywords

clear; close all; clc;

Plot settings

fontSize=15;
faceAlpha1=0.8;
faceAlpha2=0.3;
markerSize=40;
lineWidth=3;
cMap=[1 0.5 0.4; 0.9 0.3 0.27; 0.8 0.2 0.18; 0.7 0.1 0.09; 0.6 0 0; 0.5 0 0; 0.4 0 0;];
[cMap]=resampleColormap(cMap,250);

Control parameters

% Path names
defaultFolder = fileparts(fileparts(mfilename('fullpath')));
savePath=fullfile(defaultFolder,'data','temp');

% Defining file names
febioFebFileNamePart='tempModel';
febioFebFileName=fullfile(savePath,[febioFebFileNamePart,'.feb']); %FEB file name
febioLogFileName=[febioFebFileNamePart,'.txt']; %FEBio log file name
febioLogFileName_disp=[febioFebFileNamePart,'_disp_out.txt']; %Log file name for exporting displacement
febioLogFileName_strainEnergy=[febioFebFileNamePart,'_energy_out.txt']; %Log file name for exporting strain energy density

% Sphere parameters
sphereRadius=3;%
pointSpacing=0.2;

% Ground plate parameters
tubeRadius=sphereRadius.*[1 0.1];
tubeAngle=3*(pi/180);
tubeLength=abs(diff(tubeRadius))/tan(tubeAngle);

% Material parameter set
c1=1e-3; %Shear-modulus-like parameter MPa
m1=2; %Material parameter setting degree of non-linearity
k_factor=10; %Bulk modulus factor
k=c1*k_factor; %Bulk modulus
materialDensity=1e-9; %Density

% FEA control settings
timeTotal=1; %Analysis time
numTimeSteps=60; %Number of time steps desired
step_size=timeTotal/numTimeSteps;
dtmin=(timeTotal/numTimeSteps)/100; %Minimum time step size
dtmax=timeTotal/20; %Maximum time step size
max_refs=25; %Max reforms
max_ups=0; %Set to zero to use full-Newton iterations
opt_iter=15; %Optimum number of iterations
max_retries=25; %Maximum number of retires
symmetric_stiffness=0;
min_residual=1e-20;
analysisType='DYNAMIC';

runMode='external';% 'internal' or 'external'

%Contact parameters
contactPenalty=15;
laugon=0;
minaug=1;
maxaug=10;
fric_coeff=0.1;

%Specifying load
sphereVolume=4/3*(pi*sphereRadius^3); %Sphere Volume in mm^3
sphereMass=sphereVolume.*materialDensity; %Sphere mass in tone
sphereSectionArea=pi*sphereRadius^2;
bodyLoadMagnitude=(9.81*1000)*5; %Body force magnitude

forceBodyLoad=sphereMass.*bodyLoadMagnitude;
stressBodyLoad=forceBodyLoad/sphereSectionArea;

Creating model geometry and mesh

%Control settings
cPar.sphereRadius=sphereRadius;
cPar.coreRadius=sphereRadius.*0.75;
cPar.numElementsCore=ceil((sphereRadius/2)/pointSpacing);
cPar.numElementsMantel=ceil((sphereRadius-cPar.coreRadius)/(2*pointSpacing));
cPar.makeHollow=0;
cPar.outputStructType=2;
cPar.cParSmooth.n=25;

%Creating sphere
[meshOutput]=hexMeshSphere(cPar);

% Access model element and patch data
Fb_blob=meshOutput.facesBoundary;
Cb_blob=meshOutput.boundaryMarker;
V_blob=meshOutput.nodes;
E_blob=meshOutput.elements;

Visualize blob mesh

hFig=cFigure;
subplot(1,2,1); hold on;
gpatch(Fb_blob,V_blob,Cb_blob,'k',0.8);
patchNormPlot(Fb_blob,V_blob);
axisGeom(gca,fontSize);
colormap(gjet); icolorbar;
camlight headlight;

hs=subplot(1,2,2); hold on;
title('Cut view of solid mesh','FontSize',fontSize);
cPar.hFig=[hFig hs];
gpatch(Fb_blob,V_blob,'kw','none',0.25);
meshView(meshOutput,cPar);
axisGeom(gca,fontSize);
drawnow;

Creating tube model

pointSpacingBlob=max(patchEdgeLengths(Fb_blob,V_blob));
pointSpacingTube=pointSpacingBlob/2;

rEnd=sphereRadius+(sphereRadius.*((sphereRadius-tubeRadius(2))/tubeLength));
V_curve_tube=[sphereRadius rEnd 0; -tubeLength tubeRadius(2) 0;];

nResample=ceil(max(pathLength(V_curve_tube))./pointSpacingTube);
V_curve_tube=evenlySampleCurve(V_curve_tube,nResample,'pchip',0);

cPar.closeLoopOpt=1;
cPar.numSteps=[]; %If empty the number of steps is derived from point spacing of input curve
cPar.w=[1 0 0];
[F_tube,V_tube]=polyRevolve(V_curve_tube,cPar);

center_of_mass_tube=mean(V_tube,1);

Join model node sets

V=[V_blob; V_tube; ];
F_tube=F_tube+size(V_blob,1);

Visualizing model

cFigure; hold on;
gtitle('Model components',fontSize);
hl(1)=gpatch(Fb_blob,V,'rw','k',0.8);
hl(2)=gpatch(F_tube,V,'kw','k',0.5);
legend(hl,{'Blob','Tube'}); clear hl;
axisGeom(gca,fontSize);
camlight headlight;
drawnow;

Get contact surfaces

F_contact_secondary=Fb_blob;

Visualize contact surfaces

cFigure; hold on;
title('Tube blob contact pair','fontsize',fontSize);
hl(1)=gpatch(F_tube,V,'rw','k',0.8);
patchNormPlot(F_tube,V);
hl(2)=gpatch(F_contact_secondary,V,'kw','k',0.5);
patchNormPlot(F_contact_secondary,V);
legend(hl,{'Secondary','Primary'}); clear hl;
axisGeom(gca,fontSize);
camlight headlight;
drawnow;

Defining the FEBio input structure

See also febioStructTemplate and febioStruct2xml and the FEBio user manual.

%Get a template with default settings
[febio_spec]=febioStructTemplate;

%febio_spec version
febio_spec.ATTR.version='4.0';

%Module section
febio_spec.Module.ATTR.type='solid';

%Control section
febio_spec.Control.analysis=analysisType;
febio_spec.Control.time_steps=numTimeSteps;
febio_spec.Control.step_size=step_size;
febio_spec.Control.solver.max_refs=max_refs;
febio_spec.Control.solver.qn_method.max_ups=max_ups;
febio_spec.Control.solver.symmetric_stiffness=symmetric_stiffness;
febio_spec.Control.time_stepper.dtmin=dtmin;
febio_spec.Control.time_stepper.dtmax=dtmax;
febio_spec.Control.time_stepper.max_retries=max_retries;
febio_spec.Control.time_stepper.opt_iter=opt_iter;

%Material section
materialName1='Material1';
febio_spec.Material.material{1}.ATTR.name=materialName1;
febio_spec.Material.material{1}.ATTR.type='Ogden unconstrained';
febio_spec.Material.material{1}.ATTR.id=1;
febio_spec.Material.material{1}.c1=c1;
febio_spec.Material.material{1}.m1=m1;
febio_spec.Material.material{1}.c2=c1;
febio_spec.Material.material{1}.m2=-m1;
febio_spec.Material.material{1}.cp=k;
febio_spec.Material.material{1}.density=materialDensity;

materialName2='Material2';
febio_spec.Material.material{2}.ATTR.name=materialName2;
febio_spec.Material.material{2}.ATTR.type='rigid body';
febio_spec.Material.material{2}.ATTR.id=2;
febio_spec.Material.material{2}.density=1;
febio_spec.Material.material{2}.center_of_mass=center_of_mass_tube;

%Mesh section
% -> Nodes
febio_spec.Mesh.Nodes{1}.ATTR.name='nodeSet_all'; %The node set name
febio_spec.Mesh.Nodes{1}.node.ATTR.id=(1:size(V,1))'; %The node id's
febio_spec.Mesh.Nodes{1}.node.VAL=V; %The nodel coordinates

% -> Elements
partName1='Part1';
febio_spec.Mesh.Elements{1}.ATTR.name=partName1; %Name of this part
febio_spec.Mesh.Elements{1}.ATTR.type='hex8'; %Element type
febio_spec.Mesh.Elements{1}.elem.ATTR.id=(1:1:size(E_blob,1))'; %Element id's
febio_spec.Mesh.Elements{1}.elem.VAL=E_blob; %The element matrix

partName2='Part2';
febio_spec.Mesh.Elements{2}.ATTR.name=partName2; %Name of this part
febio_spec.Mesh.Elements{2}.ATTR.type='quad4'; %Element type
febio_spec.Mesh.Elements{2}.elem.ATTR.id=size(E_blob,1)+(1:1:size(F_tube,1))'; %Element id's
febio_spec.Mesh.Elements{2}.elem.VAL=F_tube; %The element matrix

% -> Surfaces
surfaceName1='contactSurface1';
febio_spec.Mesh.Surface{1}.ATTR.name=surfaceName1;
febio_spec.Mesh.Surface{1}.quad4.ATTR.id=(1:1:size(F_tube,1))';
febio_spec.Mesh.Surface{1}.quad4.VAL=F_tube;

surfaceName2='contactSurface2';
febio_spec.Mesh.Surface{2}.ATTR.name=surfaceName2;
febio_spec.Mesh.Surface{2}.quad4.ATTR.id=(1:1:size(F_contact_secondary,1))';
febio_spec.Mesh.Surface{2}.quad4.VAL=F_contact_secondary;

% -> Surface pairs
contactPairName='Contact1';
febio_spec.Mesh.SurfacePair{1}.ATTR.name=contactPairName;
febio_spec.Mesh.SurfacePair{1}.primary=surfaceName2;
febio_spec.Mesh.SurfacePair{1}.secondary=surfaceName1;

%MeshDomains section
febio_spec.MeshDomains.SolidDomain.ATTR.name=partName1;
febio_spec.MeshDomains.SolidDomain.ATTR.mat=materialName1;

febio_spec.MeshDomains.ShellDomain.ATTR.name=partName2;
febio_spec.MeshDomains.ShellDomain.ATTR.mat=materialName2;

%Loads section
% -> Body load
febio_spec.Loads.body_load.ATTR.type='const';
febio_spec.Loads.body_load.x.ATTR.lc=1;
febio_spec.Loads.body_load.x.VAL=bodyLoadMagnitude;
febio_spec.Loads.body_load.y.ATTR.lc=1;
febio_spec.Loads.body_load.y.VAL=0;
febio_spec.Loads.body_load.z.ATTR.lc=1;
febio_spec.Loads.body_load.z.VAL=0;

%Rigid section
% ->Rigid body fix boundary conditions
febio_spec.Rigid.rigid_bc{1}.ATTR.name='RigidFix_1';
febio_spec.Rigid.rigid_bc{1}.ATTR.type='rigid_fixed';
febio_spec.Rigid.rigid_bc{1}.rb=2;
febio_spec.Rigid.rigid_bc{1}.Rx_dof=1;
febio_spec.Rigid.rigid_bc{1}.Ry_dof=1;
febio_spec.Rigid.rigid_bc{1}.Rz_dof=1;
febio_spec.Rigid.rigid_bc{1}.Ru_dof=1;
febio_spec.Rigid.rigid_bc{1}.Rv_dof=1;
febio_spec.Rigid.rigid_bc{1}.Rw_dof=1;

%Contact section
febio_spec.Contact.contact{1}.ATTR.type='sliding-elastic';
febio_spec.Contact.contact{1}.ATTR.surface_pair=contactPairName;
febio_spec.Contact.contact{1}.two_pass=0;
febio_spec.Contact.contact{1}.laugon=laugon;
febio_spec.Contact.contact{1}.tolerance=0.2;
febio_spec.Contact.contact{1}.gaptol=0;
febio_spec.Contact.contact{1}.minaug=minaug;
febio_spec.Contact.contact{1}.maxaug=maxaug;
febio_spec.Contact.contact{1}.search_tol=0.01;
febio_spec.Contact.contact{1}.search_radius=0.1*sqrt(sum((max(V,[],1)-min(V,[],1)).^2,2));
febio_spec.Contact.contact{1}.symmetric_stiffness=0;
febio_spec.Contact.contact{1}.auto_penalty=1;
febio_spec.Contact.contact{1}.penalty=contactPenalty;
febio_spec.Contact.contact{1}.fric_coeff=fric_coeff;

%LoadData section
% -> load_controller
febio_spec.LoadData.load_controller{1}.ATTR.name='LC1';
febio_spec.LoadData.load_controller{1}.ATTR.id=1;
febio_spec.LoadData.load_controller{1}.ATTR.type='loadcurve';
febio_spec.LoadData.load_controller{1}.interpolate='LINEAR';
%febio_spec.LoadData.load_controller{1}.extend='CONSTANT';
febio_spec.LoadData.load_controller{1}.points.pt.VAL=[0 0; 1 1];

%Output section
% -> log file
febio_spec.Output.logfile.ATTR.file=febioLogFileName;
febio_spec.Output.logfile.node_data{1}.ATTR.file=febioLogFileName_disp;
febio_spec.Output.logfile.node_data{1}.ATTR.data='ux;uy;uz';
febio_spec.Output.logfile.node_data{1}.ATTR.delim=',';
febio_spec.Output.logfile.node_data{1}.VAL=1:size(V,1);

febio_spec.Output.logfile.element_data{1}.ATTR.file=febioLogFileName_strainEnergy;
febio_spec.Output.logfile.element_data{1}.ATTR.data='sed';
febio_spec.Output.logfile.element_data{1}.ATTR.delim=',';

% Plotfile section
febio_spec.Output.plotfile.compression=0;

Quick viewing of the FEBio input file structure

The febView function can be used to view the xml structure in a MATLAB figure window.

febView(febio_spec); %Viewing the febio file

Exporting the FEBio input file

Exporting the febio_spec structure to an FEBio input file is done using the febioStruct2xml function.

febioStruct2xml(febio_spec,febioFebFileName); %Exporting to file and domNode

Running the FEBio analysis

To run the analysis defined by the created FEBio input file the runMonitorFEBio function is used. The input for this function is a structure defining job settings e.g. the FEBio input file name. The optional output runFlag informs the user if the analysis was run succesfully.

febioAnalysis.run_filename=febioFebFileName; %The input file name
febioAnalysis.run_logname=febioLogFileName; %The name for the log file
febioAnalysis.disp_on=1; %Display information on the command window
febioAnalysis.runMode=runMode;

[runFlag]=runMonitorFEBio(febioAnalysis);%START FEBio NOW!!!!!!!!
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-------->    RUNNING/MONITORING FEBIO JOB    <-------- 20-Apr-2023 18:00:37
FEBio path: /home/kevin/FEBioStudio2/bin/febio4
# Attempt removal of existing log files                20-Apr-2023 18:00:37
 * Removal succesful                                   20-Apr-2023 18:00:37
# Attempt removal of existing .xplt files              20-Apr-2023 18:00:37
 * Removal succesful                                   20-Apr-2023 18:00:37
# Starting FEBio...                                    20-Apr-2023 18:00:37
  Max. total analysis time is: Inf s
 * Waiting for log file creation                       20-Apr-2023 18:00:38
   Max. wait time: 30 s
 * Log file found.                                     20-Apr-2023 18:00:38
# Parsing log file...                                  20-Apr-2023 18:00:38
    number of iterations   : 3                         20-Apr-2023 18:00:39
    number of reformations : 3                         20-Apr-2023 18:00:39
------- converged at time : 0.0166667                  20-Apr-2023 18:00:39
    number of iterations   : 6                         20-Apr-2023 18:00:41
    number of reformations : 6                         20-Apr-2023 18:00:41
------- converged at time : 0.04                       20-Apr-2023 18:00:41
    number of iterations   : 6                         20-Apr-2023 18:00:43
    number of reformations : 6                         20-Apr-2023 18:00:43
------- converged at time : 0.0686667                  20-Apr-2023 18:00:43
    number of iterations   : 6                         20-Apr-2023 18:00:45
    number of reformations : 6                         20-Apr-2023 18:00:45
------- converged at time : 0.1016                     20-Apr-2023 18:00:45
    number of iterations   : 6                         20-Apr-2023 18:00:47
    number of reformations : 6                         20-Apr-2023 18:00:47
------- converged at time : 0.137947                   20-Apr-2023 18:00:47
    number of iterations   : 6                         20-Apr-2023 18:00:48
    number of reformations : 6                         20-Apr-2023 18:00:48
------- converged at time : 0.177024                   20-Apr-2023 18:00:48
    number of iterations   : 7                         20-Apr-2023 18:00:51
    number of reformations : 7                         20-Apr-2023 18:00:51
------- converged at time : 0.218286                   20-Apr-2023 18:00:51
    number of iterations   : 7                         20-Apr-2023 18:00:53
    number of reformations : 7                         20-Apr-2023 18:00:53
------- converged at time : 0.261295                   20-Apr-2023 18:00:53
    number of iterations   : 7                         20-Apr-2023 18:00:55
    number of reformations : 7                         20-Apr-2023 18:00:55
------- converged at time : 0.305703                   20-Apr-2023 18:00:55
    number of iterations   : 7                         20-Apr-2023 18:00:57
    number of reformations : 7                         20-Apr-2023 18:00:57
------- converged at time : 0.351229                   20-Apr-2023 18:00:57
    number of iterations   : 6                         20-Apr-2023 18:00:59
    number of reformations : 6                         20-Apr-2023 18:00:59
------- converged at time : 0.39765                    20-Apr-2023 18:00:59
    number of iterations   : 6                         20-Apr-2023 18:01:01
    number of reformations : 6                         20-Apr-2023 18:01:01
------- converged at time : 0.444787                   20-Apr-2023 18:01:01
    number of iterations   : 6                         20-Apr-2023 18:01:03
    number of reformations : 6                         20-Apr-2023 18:01:03
------- converged at time : 0.492496                   20-Apr-2023 18:01:03
    number of iterations   : 6                         20-Apr-2023 18:01:05
    number of reformations : 6                         20-Apr-2023 18:01:05
------- converged at time : 0.540663                   20-Apr-2023 18:01:05
    number of iterations   : 8                         20-Apr-2023 18:01:08
    number of reformations : 8                         20-Apr-2023 18:01:08
------- converged at time : 0.589197                   20-Apr-2023 18:01:08
    number of iterations   : 7                         20-Apr-2023 18:01:10
    number of reformations : 7                         20-Apr-2023 18:01:10
------- converged at time : 0.638025                   20-Apr-2023 18:01:10
    number of iterations   : 7                         20-Apr-2023 18:01:12
    number of reformations : 7                         20-Apr-2023 18:01:12
------- converged at time : 0.687086                   20-Apr-2023 18:01:12
    number of iterations   : 7                         20-Apr-2023 18:01:14
    number of reformations : 7                         20-Apr-2023 18:01:14
------- converged at time : 0.736336                   20-Apr-2023 18:01:14
    number of iterations   : 7                         20-Apr-2023 18:01:16
    number of reformations : 7                         20-Apr-2023 18:01:16
------- converged at time : 0.785735                   20-Apr-2023 18:01:16
    number of iterations   : 7                         20-Apr-2023 18:01:19
    number of reformations : 7                         20-Apr-2023 18:01:19
------- converged at time : 0.835255                   20-Apr-2023 18:01:19
    number of iterations   : 7                         20-Apr-2023 18:01:21
    number of reformations : 7                         20-Apr-2023 18:01:21
------- converged at time : 0.884871                   20-Apr-2023 18:01:21
    number of iterations   : 7                         20-Apr-2023 18:01:24
    number of reformations : 7                         20-Apr-2023 18:01:24
------- converged at time : 0.934563                   20-Apr-2023 18:01:24
    number of iterations   : 7                         20-Apr-2023 18:01:26
    number of reformations : 7                         20-Apr-2023 18:01:26
------- converged at time : 0.984317                   20-Apr-2023 18:01:26
    number of iterations   : 8                         20-Apr-2023 18:01:28
    number of reformations : 8                         20-Apr-2023 18:01:28
------- converged at time : 1                          20-Apr-2023 18:01:28
 Elapsed time : 0:00:50                                20-Apr-2023 18:01:28
 N O R M A L   T E R M I N A T I O N
# Done                                                 20-Apr-2023 18:01:28
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Import FEBio results

if 1%runFlag==1 %i.e. a succesful run

Importing nodal displacements from a log file

    dataStruct=importFEBio_logfile(fullfile(savePath,febioLogFileName_disp),0,1);

    %Access data
    N_disp_mat=dataStruct.data; %Displacement
    timeVec=dataStruct.time; %Time

    %Create deformed coordinate set
    V_DEF=N_disp_mat+repmat(V,[1 1 size(N_disp_mat,3)]);

Importing element stress from a log file

    dataStruct=importFEBio_logfile(fullfile(savePath,febioLogFileName_strainEnergy),0,1);

    %Access data
    E_energy=dataStruct.data;
    indBlob=unique(Fb_blob(:));
    t=linspace(0,2*pi,250)';

    V_def_blob=V(indBlob,:)+N_disp_mat(indBlob,:,end);

    [~,indMin]=min(V_def_blob(:,1));
    [~,indMax]=max(V_def_blob(:,1));

    xEnd=V_def_blob(indMin,1);
    xStart=V_def_blob(indMax,1);
    rEnd=sphereRadius+(xEnd.*((sphereRadius-tubeRadius(2))/tubeLength));
    rStart=sphereRadius+(xStart.*((sphereRadius-tubeRadius(2))/tubeLength));

    xMid=mean([xStart xEnd]);%sum([rStart rEnd].*[xStart xEnd])./sum([rStart rEnd]);
    rMid=sphereRadius+(xMid.*((sphereRadius-tubeRadius(2))/tubeLength));

    V_plot_xEnd=[xEnd*ones(size(t)) rEnd*cos(t) rEnd*sin(t)];
    V_plot_xMid=[xMid*ones(size(t)) rMid*cos(t) rMid*sin(t)];
    V_plot_xStart=[xStart*ones(size(t)) rStart*cos(t) rStart*sin(t)];

Plotting the simulated results using anim8 to visualize and animate deformations

    DN_magnitude=sqrt(sum(N_disp_mat(:,:,end).^2,2)); %Current displacement magnitude

    % Create basic view and store graphics handle to initiate animation
    hf=cFigure; hold on;
    ht=gtitle(['Radial stretch: ',num2str(rMid/sphereRadius)]);
    hp1=gpatch(Fb_blob,V_DEF(:,:,end),DN_magnitude,'none',1); %Add graphics object to animate

    hp2=plotV(V_plot_xEnd  ,'r-','LineWidth',3);
    hp3=plotV(V_plot_xMid  ,'r-','LineWidth',3);
    hp4=plotV(V_plot_xStart,'r-','LineWidth',3);

    gpatch(F_tube,V_DEF(:,:,end),'kw','none',0.25); %Add graphics object to animate
    axisGeom(gca,fontSize);
    colormap(cMap); colorbar;
    caxis([0 max(DN_magnitude(:))]); caxis manual;
    axis(axisLim(V_DEF)); %Set axis limits statically
    camlight headlight; lighting gouraud;
    view(0,0);
%     view(-30,30); zoom(1.5);
    axis off;
    drawnow;

    LMid=1;

    % Set up animation features
    animStruct.Time=timeVec; %The time vector
    for qt=1:1:size(N_disp_mat,3) %Loop over time increments
        DN=N_disp_mat(:,:,qt); %Current displacement
        DN_magnitude=sqrt(sum(DN.^2,2));
        V_def=V_DEF(:,:,qt); %Current nodal coordinates

        V_def_blob=V_def(indBlob,:);
        [~,indMin]=min(V_def_blob(:,1));
        [~,indMax]=max(V_def_blob(:,1));

        xEnd=V_def_blob(indMin,1);
        xStart=V_def_blob(indMax,1);
        rEnd=sphereRadius+(xEnd.*((sphereRadius-tubeRadius(2))/tubeLength));
        rStart=sphereRadius+(xStart.*((sphereRadius-tubeRadius(2))/tubeLength));

        xMid=mean([xStart xEnd]);%sum([rStart rEnd].*[xStart xEnd])./sum([rStart rEnd]);
        rMid=sphereRadius+(xMid.*((sphereRadius-tubeRadius(2))/tubeLength));

        LMid=min(LMid,rMid/sphereRadius);

        V_plot_xEnd=[xEnd*ones(size(t)) rEnd*cos(t) rEnd*sin(t)];
        V_plot_xMid=[xMid*ones(size(t)) rMid*cos(t) rMid*sin(t)];
        V_plot_xStart=[xStart*ones(size(t)) rStart*cos(t) rStart*sin(t)];

        %Set entries in animation structure
        animStruct.Handles{qt}=[hp1 hp1 hp2 hp2 hp2 hp3 hp3 hp3 hp4 hp4 hp4 ht]; %Handles of objects to animate
        animStruct.Props{qt}={'Vertices','CData','XData','YData','ZData','XData','YData','ZData','XData','YData','ZData','String'}; %Properties of objects to animate
        animStruct.Set{qt}={V_def,DN_magnitude,...
            V_plot_xEnd(:,1),V_plot_xEnd(:,2),V_plot_xEnd(:,3),...
            V_plot_xMid(:,1),V_plot_xMid(:,2),V_plot_xMid(:,3),...
            V_plot_xStart(:,1),V_plot_xStart(:,2),V_plot_xStart(:,3),...
            ['Radial stretch: ',num2str(rMid/sphereRadius)]}; %Property values for to set in order to animate
    end
    anim8(hf,animStruct); %Initiate animation feature

    drawnow;
end

GIBBON www.gibboncode.org

Kevin Mattheus Moerman, [email protected]

GIBBON footer text

License: https://github.com/gibbonCode/GIBBON/blob/master/LICENSE

GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for image segmentation, image-based modeling, meshing, and finite element analysis.

Copyright (C) 2006-2022 Kevin Mattheus Moerman and the GIBBON contributors

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.