DEMO_febio_0041_beam_L_force
Below is a demonstration for:
- Building geometry for a beam with hexahedral elements
- Defining the boundary conditions
- Coding the febio structure
- Running the model
- Importing and visualizing the displacement results
Contents
- Keywords
- Control parameters
- CREATING MESHED BOX
- Make last element set "h" heigh
- Find side faces to extrude
- Merging element sets
- Refining elements
- DEFINE BC's
- Defining the FEBio input structure
- Quick viewing of the FEBio input file structure
- Exporting the FEBio input file
- Running the FEBio analysis
- Import FEBio results
Keywords
- febio_spec version 4.0
- febio, FEBio
- beam force loading
- force control boundary condition
- hexahedral elements, hex8, hex20
- beam, rectangular
- static, solid
- hyperelastic, Ogden
- displacement logfile
- stress logfile
clear; close all; clc;
Plot settings
fontSize=15; faceAlpha1=0.8; faceAlpha2=1; edgeColor=0.25*ones(1,3); edgeWidth=1.5; markerSize=50; markerSize2=20; lineWidth=3;
Control parameters
% Path names defaultFolder = fileparts(fileparts(mfilename('fullpath'))); savePath=fullfile(defaultFolder,'data','temp'); % Defining file names febioFebFileNamePart='tempModel'; febioFebFileName=fullfile(savePath,[febioFebFileNamePart,'.feb']); %FEB file name febioLogFileName=[febioFebFileNamePart,'.txt']; %FEBio log file name febioLogFileName_disp=[febioFebFileNamePart,'_disp_out.txt']; %Log file name for exporting displacement febioLogFileName_force=[febioFebFileNamePart,'_force_out.txt']; %Log file name for exporting force %Specifying dimensions and number of elements L=85.4; h=5.6; b=50; t=45; phi=10; sampleWidth=5.6; sampleThickness=b; sampleHeight=L+h; numElementsWidth=round(sampleWidth/h); numElementsThickness=round(sampleThickness/h); numElementsHeight=round(sampleHeight/h); appliedForce=2800; E_youngs1=6550; % 6.55e10 Pa = 65.5 GPa = 6550 MPa v1=0.3; E_youngs2=7200; %72 Gpa = 7200 v2=0.3; nRefine=0; % FEA control settings numTimeSteps=20; %Number of time steps desired max_refs=25; %Max reforms max_ups=0; %Set to zero to use full-Newton iterations opt_iter=10; %Optimum number of iterations max_retries=5; %Maximum number of retires dtmin=(1/numTimeSteps)/100; %Minimum time step size dtmax=1/numTimeSteps; %Maximum time step size runMode='external';% 'internal' or 'external'
CREATING MESHED BOX
%Create box 1 boxDim=[sampleWidth sampleThickness sampleHeight]; %Dimensions boxEl=[numElementsWidth numElementsThickness numElementsHeight]; %Number of elements [box1]=hexMeshBox(boxDim,boxEl); E=box1.E; V=box1.V; Fb=box1.Fb; Cb=box1.faceBoundaryMarker; X=V(:,1); Y=V(:,2); Z=V(:,3); VE=[mean(X(E),2) mean(Y(E),2) mean(Z(E),2)];
% Plotting boundary surfaces cFigure; hold on; title('Model surfaces','FontSize',fontSize); gpatch(Fb,V,Cb,'k',faceAlpha1); colormap(gjet(6)); icolorbar; axisGeom; camlight headlight; set(gca,'FontSize',fontSize); drawnow;
Make last element set "h" heigh
F_bottom=Fb(Cb==5,:);
logicBottomElements=any(ismember(E,F_bottom),2);
E_bottom=E(logicBottomElements,:);
[FE_bottom,~]=element2patch(E_bottom);
indV_FE_bottom=unique(FE_bottom(:));
mean_E_bottom=mean(V(indV_FE_bottom,:),1);
Z=V(:,3);
zMax=max(V(indV_FE_bottom,3));
zThreshold=zMax-(h/2);
indV_bottom=unique(F_bottom(:));
indV_bottomTop=indV_FE_bottom(V(indV_FE_bottom,3)>zThreshold);
% V(indV_bottomTop,3)=min(V(:,3))+h;
Find side faces to extrude
F_side=Fb(Cb==2,:); logicSideBottom=all(ismember(F_side,indV_FE_bottom),2); F_side_bottom=F_side(logicSideBottom,:); layerThickness=t-h; numStepsExtrude=ceil(layerThickness/h)+1; dirSet=1; [Eq,Vq,Fq_start,Fq_end]=quadThick(F_side_bottom,V,dirSet,layerThickness,numStepsExtrude); [Fq,~]=element2patch(Eq);
Merging element sets
F_top=Fb(Cb==6,:);
F_force=Fq_end;
F_force=F_force+size(V,1);
Eq=Eq+size(V,1);
elementMaterialIndices=[ones(size(E,1),1); 2*ones(size(Eq,1),1);];
E=[E;Eq];
V=[V;Vq];
[~,ind1,ind2]=unique(pround(V,5),'rows');
V=V(ind1,:);
E=ind2(E);
F_top=ind2(F_top);
F_force=ind2(F_force);
[FE,CE]=element2patch(E,elementMaterialIndices);
Plotting boundary surfaces
cFigure; hold on; title('Model surfaces','FontSize',fontSize); gpatch(FE,V,CE,'k',1); gpatch(F_force,V,'y','y',1); gpatch(F_top,V,'g','g',1); % plotV(V,'k.','MarkerSize',25); colormap(gjet(4)); icolorbar; axisGeom; camlight headlight; set(gca,'FontSize',fontSize); drawnow;
Refining elements
C=[1:1:size(E,1)]'; if nRefine>0 splitMethod=1; [E,V,C,CV]=subHex(E,V,nRefine,splitMethod); end elementMaterialIndices=elementMaterialIndices(C); E1=E(elementMaterialIndices==1,:); E2=E(elementMaterialIndices==2,:); [FE,CF]=element2patch(E,C); [D]=patchEdgeLengths(FE,V); indTop=find(V(:,3)>(max(V(:,3))-max(D(:))/2)); indForce=find(V(:,1)>(max(V(:,1))-max(D(:))/2)); logicTopFaces=all(ismember(FE,indTop),2); logicForceFaces=all(ismember(FE,indForce),2); F_top=FE(logicTopFaces,:); F_force=FE(logicForceFaces,:); indBoundaryFaces=tesBoundary(FE,V); Fb=FE(indBoundaryFaces,:);
Warning: Second input (vertices) no longer required. Update code to avoid future error.
Plotting boundary surfaces
cFigure; hold on; title('Model surfaces','FontSize',fontSize); gpatch(Fb,V,0.5*ones(1,3),'k',1); gpatch(F_force,V,'r','k',1); gpatch(F_top,V,'g','k',1); plotV(V(indTop,:),'b.','MarkerSize',25); plotV(V(indForce,:),'y.','MarkerSize',25); % plotV(V,'k.','MarkerSize',25); % colormap(gjet(6)); icolorbar; axisGeom; camlight headlight; set(gca,'FontSize',fontSize); drawnow;
DEFINE BC's
%Supported nodes bcSupportList=unique(F_top(:)); %Prescribed force nodes bcPrescribeList=unique(F_force(:)); numForceNodes=numel(bcPrescribeList); forceNormVec=[0 0 -1]; [R]=euler2DCM([0 phi/180*pi 0]); forceNormVec=(R*forceNormVec')'; bcPrescribedForce=(appliedForce.*forceNormVec)/numForceNodes;
Visualize BC's
cFigure; hold on; title('Boundary conditions','FontSize',fontSize); gpatch(Fb,V,0.75*ones(1,3),'k',1); plotV(V(bcSupportList,:),'b.','MarkerSize',markerSize); plotV(V(bcPrescribeList,:),'r.','MarkerSize',markerSize); quiverVec(V(bcPrescribeList,:),bcPrescribedForce(ones(numel(bcPrescribeList),1),:),25,'r'); axisGeom; camlight headlight; set(gca,'FontSize',fontSize); drawnow;
Defining the FEBio input structure
See also febioStructTemplate and febioStruct2xml and the FEBio user manual.
%Get a template with default settings [febio_spec]=febioStructTemplate; %febio_spec version febio_spec.ATTR.version='4.0'; %Module section febio_spec.Module.ATTR.type='solid'; %Control section febio_spec.Control.analysis='STATIC'; febio_spec.Control.time_steps=numTimeSteps; febio_spec.Control.step_size=1/numTimeSteps; febio_spec.Control.solver.max_refs=max_refs; febio_spec.Control.solver.qn_method.max_ups=max_ups; febio_spec.Control.time_stepper.dtmin=dtmin; febio_spec.Control.time_stepper.dtmax=dtmax; febio_spec.Control.time_stepper.max_retries=max_retries; febio_spec.Control.time_stepper.opt_iter=opt_iter; %Material section materialName1='Material1'; febio_spec.Material.material{1}.ATTR.name=materialName1; febio_spec.Material.material{1}.ATTR.type='neo-Hookean'; febio_spec.Material.material{1}.ATTR.id=1; febio_spec.Material.material{1}.E=E_youngs1; febio_spec.Material.material{1}.v=v1; materialName2='Material2'; febio_spec.Material.material{2}.ATTR.name=materialName2; febio_spec.Material.material{2}.ATTR.type='neo-Hookean'; febio_spec.Material.material{2}.ATTR.id=2; febio_spec.Material.material{2}.E=E_youngs2; febio_spec.Material.material{2}.v=v2; %Mesh section % -> Nodes febio_spec.Mesh.Nodes{1}.ATTR.name='nodeSet_all'; %The node set name febio_spec.Mesh.Nodes{1}.node.ATTR.id=(1:size(V,1))'; %The node id's febio_spec.Mesh.Nodes{1}.node.VAL=V; %The nodel coordinates % -> Elements partName1='Part1'; febio_spec.Mesh.Elements{1}.ATTR.name=partName1; %Name of this part febio_spec.Mesh.Elements{1}.ATTR.type='hex8'; %Element type febio_spec.Mesh.Elements{1}.elem.ATTR.id=(1:1:size(E1,1))'; %Element id's febio_spec.Mesh.Elements{1}.elem.VAL=E1; %The element matrix partName2='Part2'; febio_spec.Mesh.Elements{2}.ATTR.name=partName2; %Name of this part febio_spec.Mesh.Elements{2}.ATTR.type='hex8'; %Element type febio_spec.Mesh.Elements{2}.elem.ATTR.id=size(E1,1)+(1:1:size(E2,1))'; %Element id's febio_spec.Mesh.Elements{2}.elem.VAL=E2; %The element matrix % -> NodeSets nodeSetName1='bcSupportList'; febio_spec.Mesh.NodeSet{1}.ATTR.name=nodeSetName1; febio_spec.Mesh.NodeSet{1}.VAL=mrow(bcSupportList); nodeSetName2='bcPrescribeList'; febio_spec.Mesh.NodeSet{2}.ATTR.name=nodeSetName2; febio_spec.Mesh.NodeSet{2}.VAL=mrow(bcPrescribeList); %MeshDomains section febio_spec.MeshDomains.SolidDomain{1}.ATTR.name=partName1; febio_spec.MeshDomains.SolidDomain{1}.ATTR.mat=materialName1; febio_spec.MeshDomains.SolidDomain{2}.ATTR.name=partName2; febio_spec.MeshDomains.SolidDomain{2}.ATTR.mat=materialName2; %Boundary condition section % -> Fix boundary conditions febio_spec.Boundary.bc{1}.ATTR.name='zero_displacement_xyz'; febio_spec.Boundary.bc{1}.ATTR.type='zero displacement'; febio_spec.Boundary.bc{1}.ATTR.node_set=nodeSetName1; febio_spec.Boundary.bc{1}.x_dof=1; febio_spec.Boundary.bc{1}.y_dof=1; febio_spec.Boundary.bc{1}.z_dof=1; %Loads section % -> Prescribed nodal forces febio_spec.Loads.nodal_load{1}.ATTR.name='PrescribedForce'; febio_spec.Loads.nodal_load{1}.ATTR.type='nodal_force'; febio_spec.Loads.nodal_load{1}.ATTR.node_set=nodeSetName2; febio_spec.Loads.nodal_load{1}.value.ATTR.lc=1; febio_spec.Loads.nodal_load{1}.value.VAL=bcPrescribedForce; %LoadData section % -> load_controller febio_spec.LoadData.load_controller{1}.ATTR.name='LC_1'; febio_spec.LoadData.load_controller{1}.ATTR.id=1; febio_spec.LoadData.load_controller{1}.ATTR.type='loadcurve'; febio_spec.LoadData.load_controller{1}.interpolate='LINEAR'; %febio_spec.LoadData.load_controller{1}.extend='CONSTANT'; febio_spec.LoadData.load_controller{1}.points.pt.VAL=[0 0; 1 1]; %Output section % -> log file febio_spec.Output.logfile.ATTR.file=febioLogFileName; febio_spec.Output.logfile.node_data{1}.ATTR.file=febioLogFileName_disp; febio_spec.Output.logfile.node_data{1}.ATTR.data='ux;uy;uz'; febio_spec.Output.logfile.node_data{1}.ATTR.delim=','; febio_spec.Output.logfile.node_data{2}.ATTR.file=febioLogFileName_force; febio_spec.Output.logfile.node_data{2}.ATTR.data='Rx;Ry;Rz'; febio_spec.Output.logfile.node_data{2}.ATTR.delim=','; % Plotfile section febio_spec.Output.plotfile.compression=0;
Quick viewing of the FEBio input file structure
The febView function can be used to view the xml structure in a MATLAB figure window.
febView(febio_spec); %Viewing the febio file
Exporting the FEBio input file
Exporting the febio_spec structure to an FEBio input file is done using the febioStruct2xml function.
febioStruct2xml(febio_spec,febioFebFileName); %Exporting to file and domNode
Running the FEBio analysis
To run the analysis defined by the created FEBio input file the runMonitorFEBio function is used. The input for this function is a structure defining job settings e.g. the FEBio input file name. The optional output runFlag informs the user if the analysis was run succesfully.
febioAnalysis.run_filename=febioFebFileName; %The input file name febioAnalysis.run_logname=febioLogFileName; %The name for the log file febioAnalysis.disp_on=1; %Display information on the command window febioAnalysis.runMode=runMode; [runFlag]=runMonitorFEBio(febioAnalysis);%START FEBio NOW!!!!!!!!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% --------> RUNNING/MONITORING FEBIO JOB <-------- 20-Apr-2023 18:06:18 FEBio path: /home/kevin/FEBioStudio2/bin/febio4 # Attempt removal of existing log files 20-Apr-2023 18:06:18 * Removal succesful 20-Apr-2023 18:06:18 # Attempt removal of existing .xplt files 20-Apr-2023 18:06:19 * Removal succesful 20-Apr-2023 18:06:19 # Starting FEBio... 20-Apr-2023 18:06:19 Max. total analysis time is: Inf s * Waiting for log file creation 20-Apr-2023 18:06:19 Max. wait time: 30 s * Log file found. 20-Apr-2023 18:06:19 # Parsing log file... 20-Apr-2023 18:06:19 number of iterations : 8 20-Apr-2023 18:06:19 number of reformations : 8 20-Apr-2023 18:06:19 ------- converged at time : 0.05 20-Apr-2023 18:06:19 number of iterations : 8 20-Apr-2023 18:06:19 number of reformations : 8 20-Apr-2023 18:06:19 ------- converged at time : 0.1 20-Apr-2023 18:06:19 number of iterations : 7 20-Apr-2023 18:06:19 number of reformations : 7 20-Apr-2023 18:06:19 ------- converged at time : 0.15 20-Apr-2023 18:06:19 number of iterations : 7 20-Apr-2023 18:06:19 number of reformations : 7 20-Apr-2023 18:06:19 ------- converged at time : 0.2 20-Apr-2023 18:06:19 number of iterations : 7 20-Apr-2023 18:06:19 number of reformations : 7 20-Apr-2023 18:06:19 ------- converged at time : 0.25 20-Apr-2023 18:06:19 number of iterations : 6 20-Apr-2023 18:06:20 number of reformations : 6 20-Apr-2023 18:06:20 ------- converged at time : 0.3 20-Apr-2023 18:06:20 number of iterations : 6 20-Apr-2023 18:06:20 number of reformations : 6 20-Apr-2023 18:06:20 ------- converged at time : 0.35 20-Apr-2023 18:06:20 number of iterations : 6 20-Apr-2023 18:06:20 number of reformations : 6 20-Apr-2023 18:06:20 ------- converged at time : 0.4 20-Apr-2023 18:06:20 number of iterations : 6 20-Apr-2023 18:06:20 number of reformations : 6 20-Apr-2023 18:06:20 ------- converged at time : 0.45 20-Apr-2023 18:06:20 number of iterations : 6 20-Apr-2023 18:06:20 number of reformations : 6 20-Apr-2023 18:06:20 ------- converged at time : 0.5 20-Apr-2023 18:06:20 number of iterations : 5 20-Apr-2023 18:06:20 number of reformations : 5 20-Apr-2023 18:06:20 ------- converged at time : 0.55 20-Apr-2023 18:06:20 number of iterations : 5 20-Apr-2023 18:06:20 number of reformations : 5 20-Apr-2023 18:06:20 ------- converged at time : 0.6 20-Apr-2023 18:06:20 number of iterations : 5 20-Apr-2023 18:06:20 number of reformations : 5 20-Apr-2023 18:06:20 ------- converged at time : 0.65 20-Apr-2023 18:06:20 number of iterations : 5 20-Apr-2023 18:06:20 number of reformations : 5 20-Apr-2023 18:06:20 ------- converged at time : 0.7 20-Apr-2023 18:06:20 number of iterations : 4 20-Apr-2023 18:06:20 number of reformations : 4 20-Apr-2023 18:06:20 ------- converged at time : 0.75 20-Apr-2023 18:06:20 number of iterations : 4 20-Apr-2023 18:06:20 number of reformations : 4 20-Apr-2023 18:06:20 ------- converged at time : 0.8 20-Apr-2023 18:06:20 number of iterations : 4 20-Apr-2023 18:06:20 number of reformations : 4 20-Apr-2023 18:06:20 ------- converged at time : 0.85 20-Apr-2023 18:06:20 number of iterations : 4 20-Apr-2023 18:06:20 number of reformations : 4 20-Apr-2023 18:06:20 ------- converged at time : 0.9 20-Apr-2023 18:06:20 number of iterations : 4 20-Apr-2023 18:06:21 number of reformations : 4 20-Apr-2023 18:06:21 ------- converged at time : 0.95 20-Apr-2023 18:06:21 number of iterations : 4 20-Apr-2023 18:06:21 number of reformations : 4 20-Apr-2023 18:06:21 ------- converged at time : 1 20-Apr-2023 18:06:21 Elapsed time : 0:00:02 20-Apr-2023 18:06:21 N O R M A L T E R M I N A T I O N # Done 20-Apr-2023 18:06:21 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Import FEBio results
if runFlag==1 %i.e. a succesful run
Importing nodal displacements from a log file
dataStruct=importFEBio_logfile(fullfile(savePath,febioLogFileName_disp),0,1); %Access data N_disp_mat=dataStruct.data; %Displacement timeVec=dataStruct.time; %Time %Create deformed coordinate set V_DEF=N_disp_mat+repmat(V,[1 1 size(N_disp_mat,3)]);
Plotting the simulated results using anim8 to visualize and animate deformations
DN_magnitude=sqrt(sum(N_disp_mat(:,:,end).^2,2)); %Current displacement magnitude % Create basic view and store graphics handle to initiate animation hf=cFigure; %Open figure gtitle([febioFebFileNamePart,': Press play to animate']); title('Displacement magnitude [mm]','Interpreter','Latex') hp=gpatch(Fb,V_DEF(:,:,end),DN_magnitude,'k',1); %Add graphics object to animate hp.Marker='.'; hp.MarkerSize=markerSize2; hp.FaceColor='interp'; gpatch(Fb,V,0.5*ones(1,3),'k',0.25); %A static graphics object axisGeom(gca,fontSize); colormap(gjet(250)); colorbar; caxis([0 max(DN_magnitude)]); axis(axisLim(V_DEF)); %Set axis limits statically camlight headlight; % Set up animation features animStruct.Time=timeVec; %The time vector for qt=1:1:size(N_disp_mat,3) %Loop over time increments DN_magnitude=sqrt(sum(N_disp_mat(:,:,qt).^2,2)); %Current displacement magnitude %Set entries in animation structure animStruct.Handles{qt}=[hp hp]; %Handles of objects to animate animStruct.Props{qt}={'Vertices','CData'}; %Properties of objects to animate animStruct.Set{qt}={V_DEF(:,:,qt),DN_magnitude}; %Property values for to set in order to animate end anim8(hf,animStruct); %Initiate animation feature drawnow;
end
GIBBON www.gibboncode.org
Kevin Mattheus Moerman, [email protected]
GIBBON footer text
License: https://github.com/gibbonCode/GIBBON/blob/master/LICENSE
GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for image segmentation, image-based modeling, meshing, and finite element analysis.
Copyright (C) 2006-2022 Kevin Mattheus Moerman and the GIBBON contributors
This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.