DEMO_febio_0042_inverse_FEA_cube_uniaxial

Below is a demonstration for:

Contents

Keywords

clear; close all; clc;

Plot settings

fontSize=20;
faceAlpha1=0.8;
faceAlpha2=1;
edgeColor=0.25*ones(1,3);
edgeWidth=1.5;
markerSize=25;
markerSize2=50;
lineWidth=5;
lineWidth2=3;
cMap=viridis(20);

Control parameters

% Path names
defaultFolder = fileparts(fileparts(mfilename('fullpath')));
savePath=fullfile(defaultFolder,'data','temp');

% Defining file names
febioFebFileNamePart='tempModel';
febioFebFileName=fullfile(savePath,[febioFebFileNamePart,'.feb']); %FEB file name
febioLogFileName=[febioFebFileNamePart,'.txt']; %FEBio log file name
febioLogFileName_disp=[febioFebFileNamePart,'_disp_out.txt']; %Log file name for exporting displacement
febioLogFileName_force=[febioFebFileNamePart,'_force_out.txt']; %Log file name for exporting force
febioLogFileName_stress=[febioFebFileNamePart,'_stress_out.txt']; %Log file name for exporting stress sigma_z
febioLogFileName_stretch=[febioFebFileNamePart,'_stretch_out.txt']; %Log file name for exporting stretch U_z

%Specifying dimensions and number of elements
sampleWidth=10;
sampleThickness=10;
sampleHeight=10;
pointSpacings=10*ones(1,3);
initialArea=sampleWidth*sampleThickness;

numElementsWidth=round(sampleWidth/pointSpacings(1));
numElementsThickness=round(sampleThickness/pointSpacings(2));
numElementsHeight=round(sampleHeight/pointSpacings(3));

stretchLoad=0.7;
displacementMagnitude=(stretchLoad*sampleHeight)-sampleHeight;

%True material parameter set
k_factor=1e2;
c1_true=0.000322322142618;
m1_true=6;
k_true=c1_true*k_factor;

%Initial material parameter set
c1_ini=c1_true*2;
m1_ini=m1_true/2;
k_ini=c1_ini*k_factor;
P=[c1_ini m1_ini];

% FEA control settings
numTimeSteps=10; %Number of time steps desired
max_refs=25; %Max reforms
max_ups=0; %Set to zero to use full-Newton iterations
opt_iter=6; %Optimum number of iterations
max_retries=5; %Maximum number of retires
dtmin=(1/numTimeSteps)/100; %Minimum time step size
dtmax=1/numTimeSteps; %Maximum time step size

runMode='external';% 'internal' or 'external'

SIMULATE EXPERIMENTAL DATA

%Basic set
stress_cauchy_exp=1/1000*[-0.606636933451196;-0.594598753306976;-0.582704841004989;-0.571357405135258;-0.560202987257958;-0.549116632489736;-0.538518403222691;-0.528087294560408;-0.518193056737126;-0.508206114096577;-0.498701595140669;-0.489855637164223;-0.480813541456146;-0.472386398119889;-0.463619435755875;-0.455563887366101;-0.447492483369391;-0.439573886089611;-0.432050298442763;-0.424607647116797;-0.416804189884078;-0.410387298955262;-0.402977977822379;-0.396396657790034;-0.389210485373911;-0.383000553144204;-0.376675743693335;-0.370668858911072;-0.364731155035823;-0.358344772157269;-0.352790185960043;-0.346625957990168;-0.340956058045645;-0.335892515500584;-0.330212348100342;-0.325153422018813;-0.319890421672462;-0.315056500840712;-0.310859570288282;-0.305563240532117;-0.301114864342368;-0.295807178919732;-0.291944875824590;-0.287799721606394;-0.282704271932097;-0.279560319546267;-0.273953092186896;-0.271205596632553;-0.266019580975468;-0.261921529885230;-0.259473236771767;-0.254229845700605;-0.251227010966108;-0.246731599709182;-0.243347463269765;-0.240668206009318;-0.235904450179518;-0.233443491646300;-0.229240342796589;-0.226328455230997;-0.222574693739149;-0.219690552720043;-0.215908110296801;-0.213462994691799;-0.209402262394587;-0.206143135063048;-0.204259473767410;-0.200271046174199;-0.198497342254049;-0.194018107075590;-0.190682588685824;-0.190178278993820;-0.184939186637633;-0.184540226448861;-0.179325520197559;-0.177302998325867;-0.174896317893232;-0.170891038492450;-0.170506389072493;-0.165503062182587;-0.164964944739691;-0.160899776454826;-0.158388071874370;-0.156732253086585;-0.152865980799647;-0.151886036142296;-0.147064551962397;-0.146636586148680;-0.143247545748075;-0.139910407552933;-0.139643630040939;-0.135175245456319;-0.134411814767664;-0.131535143940800;-0.127943005303573;-0.127499404828055;-0.123718865018965;-0.123269655840332;-0.118450118919226;-0.117869603457104;-0.114259063948408;-0.111845005007273;-0.110782903827826;-0.106815200840467;-0.108112322079051;-0.103218831561054;-0.103859461792770;-0.100330051927225;-0.0988503888488038;-0.0984110683795259;-0.0920373613042230;-0.0944900398318279;-0.0908054642234128;-0.0873647791392896;-0.0857302637239363;-0.0832930518728098;-0.0811377337125286;-0.0801419455213994;-0.0773146108678843;-0.0750524119380378;-0.0737660915109812;-0.0711063097725948;-0.0689106003957611;-0.0662015603338655;-0.0637907034798034;-0.0622238776663924;-0.0587129121234732;-0.0590737570248270;-0.0542752113831988;-0.0539468997803651;-0.0504474583208646;-0.0479308792263506;-0.0474997497002284;-0.0422136232687380;-0.0419340474843669;-0.0383206523546593;-0.0353822402853126;-0.0342394575632298;-0.0296092241247699;-0.0290386117855990;-0.0252785740102147;-0.0211393477778685;-0.0210232271972257;-0.0149625128602809;-0.0150455267730763;-0.00925788965002460;-0.00559693887219605;-0.00235368730112040;0.00439939147625970;0.00280776088737496];
stretch_exp=[0.700330019000000;0.702340563275168;0.704351107550336;0.706361651825503;0.708372196100671;0.710382740375839;0.712393284651007;0.714403828926175;0.716414373201342;0.718424917476510;0.720435461751678;0.722446006026846;0.724456550302013;0.726467094577181;0.728477638852349;0.730488183127517;0.732498727402685;0.734509271677852;0.736519815953020;0.738530360228188;0.740540904503356;0.742551448778524;0.744561993053691;0.746572537328859;0.748583081604027;0.750593625879195;0.752604170154362;0.754614714429530;0.756625258704698;0.758635802979866;0.760646347255034;0.762656891530201;0.764667435805369;0.766677980080537;0.768688524355705;0.770699068630873;0.772709612906040;0.774720157181208;0.776730701456376;0.778741245731544;0.780751790006711;0.782762334281879;0.784772878557047;0.786783422832215;0.788793967107383;0.790804511382550;0.792815055657718;0.794825599932886;0.796836144208054;0.798846688483222;0.800857232758389;0.802867777033557;0.804878321308725;0.806888865583893;0.808899409859060;0.810909954134228;0.812920498409396;0.814931042684564;0.816941586959732;0.818952131234899;0.820962675510067;0.822973219785235;0.824983764060403;0.826994308335570;0.829004852610738;0.831015396885906;0.833025941161074;0.835036485436242;0.837047029711409;0.839057573986577;0.841068118261745;0.843078662536913;0.845089206812081;0.847099751087248;0.849110295362416;0.851120839637584;0.853131383912752;0.855141928187920;0.857152472463087;0.859163016738255;0.861173561013423;0.863184105288591;0.865194649563758;0.867205193838926;0.869215738114094;0.871226282389262;0.873236826664430;0.875247370939597;0.877257915214765;0.879268459489933;0.881279003765101;0.883289548040269;0.885300092315436;0.887310636590604;0.889321180865772;0.891331725140940;0.893342269416107;0.895352813691275;0.897363357966443;0.899373902241611;0.901384446516779;0.903394990791946;0.905405535067114;0.907416079342282;0.909426623617450;0.911437167892617;0.913447712167785;0.915458256442953;0.917468800718121;0.919479344993289;0.921489889268456;0.923500433543624;0.925510977818792;0.927521522093960;0.929532066369128;0.931542610644295;0.933553154919463;0.935563699194631;0.937574243469799;0.939584787744967;0.941595332020134;0.943605876295302;0.945616420570470;0.947626964845638;0.949637509120805;0.951648053395973;0.953658597671141;0.955669141946309;0.957679686221477;0.959690230496644;0.961700774771812;0.963711319046980;0.965721863322148;0.967732407597316;0.969742951872483;0.971753496147651;0.973764040422819;0.975774584697987;0.977785128973154;0.979795673248322;0.981806217523490;0.983816761798658;0.985827306073826;0.987837850348993;0.989848394624161;0.991858938899329;0.993869483174497;0.995880027449664;0.997890571724832;0.999901116000000];

%Interpolate to higher sampling
n=100;
stretch_exp_n=linspace(1,stretchLoad,n);
stress_cauchy_exp_n = interp1(stretch_exp,stress_cauchy_exp,stretch_exp_n,'pchip');

%Override variables
stress_cauchy_exp=stress_cauchy_exp_n;
stretch_exp=stretch_exp_n;

%Add noise
stdNoise=0.01; %Standard deviation in units of stress
stress_cauchy_exp_n=stress_cauchy_exp_n+stdNoise.*randn(size(stress_cauchy_exp_n));

CREATING MESHED BOX

%Create box 1
boxDim=[sampleWidth sampleThickness sampleHeight]; %Dimensions
boxEl=[numElementsWidth numElementsThickness numElementsHeight]; %Number of elements
[box1]=hexMeshBox(boxDim,boxEl);
E=box1.E;
V=box1.V;
Fb=box1.Fb;
faceBoundaryMarker=box1.faceBoundaryMarker;

X=V(:,1); Y=V(:,2); Z=V(:,3);
VE=[mean(X(E),2) mean(Y(E),2) mean(Z(E),2)];

elementMaterialIndices=ones(size(E,1),1);
% Plotting boundary surfaces

cFigure; hold on;
title('Model surfaces','FontSize',fontSize);
gpatch(Fb,V,faceBoundaryMarker,'k',0.5);
colormap(gjet(6)); icolorbar;
axisGeom(gca,fontSize);
drawnow;

DEFINE BC's

%Define supported node sets
logicFace=faceBoundaryMarker==1;
Fr=Fb(logicFace,:);
bcSupportList_X=unique(Fr(:));

logicFace=faceBoundaryMarker==3;
Fr=Fb(logicFace,:);
bcSupportList_Y=unique(Fr(:));

logicFace=faceBoundaryMarker==5;
Fr=Fb(logicFace,:);
bcSupportList_Z=unique(Fr(:));

%Prescribed displacement nodes
logicPrescribe=faceBoundaryMarker==6;
Fr=Fb(logicPrescribe,:);
bcPrescribeList=unique(Fr(:));

Visualize BC's

cFigure; hold on;
title('Complete model','FontSize',fontSize);

gpatch(Fb,V,'kw','k',0.5);
plotV(V(bcSupportList_X,:),'r.','MarkerSize',markerSize);
plotV(V(bcSupportList_Y,:),'g.','MarkerSize',markerSize);
plotV(V(bcSupportList_Z,:),'b.','MarkerSize',markerSize);
plotV(V(bcPrescribeList,:),'k.','MarkerSize',markerSize);

axisGeom(gca,fontSize);
drawnow;

Defining the FEBio input structure

See also febioStructTemplate and febioStruct2xml and the FEBio user manual.

%Get a template with default settings
[febio_spec]=febioStructTemplate;

%febio_spec version
febio_spec.ATTR.version='4.0';

%Module section
febio_spec.Module.ATTR.type='solid';

%Control section
febio_spec.Control.analysis='STATIC';
febio_spec.Control.time_steps=numTimeSteps;
febio_spec.Control.step_size=1/numTimeSteps;
febio_spec.Control.solver.max_refs=max_refs;
febio_spec.Control.solver.qn_method.max_ups=max_ups;
febio_spec.Control.time_stepper.dtmin=dtmin;
febio_spec.Control.time_stepper.dtmax=dtmax;
febio_spec.Control.time_stepper.max_retries=max_retries;
febio_spec.Control.time_stepper.opt_iter=opt_iter;

%Material section
materialName1='Material1';
febio_spec.Material.material{1}.ATTR.name=materialName1;
febio_spec.Material.material{1}.ATTR.type='Ogden';
febio_spec.Material.material{1}.ATTR.id=1;
febio_spec.Material.material{1}.c1=c1_ini;
febio_spec.Material.material{1}.m1=m1_ini;
febio_spec.Material.material{1}.c2=c1_ini;
febio_spec.Material.material{1}.m2=-m1_ini;
febio_spec.Material.material{1}.k=k_ini;

% Mesh section
% -> Nodes
febio_spec.Mesh.Nodes{1}.ATTR.name='Object1'; %The node set name
febio_spec.Mesh.Nodes{1}.node.ATTR.id=(1:size(V,1))'; %The node id's
febio_spec.Mesh.Nodes{1}.node.VAL=V; %The nodel coordinates

% -> Elements
partName1='Part1';
febio_spec.Mesh.Elements{1}.ATTR.name=partName1; %Name of this part
febio_spec.Mesh.Elements{1}.ATTR.type='hex8'; %Element type
febio_spec.Mesh.Elements{1}.elem.ATTR.id=(1:1:size(E,1))'; %Element id's
febio_spec.Mesh.Elements{1}.elem.VAL=E; %The element matrix

% -> NodeSets
nodeSetName1='bcSupportList_X';
nodeSetName2='bcSupportList_Y';
nodeSetName3='bcSupportList_Z';
nodeSetName4='bcPrescribeList';

febio_spec.Mesh.NodeSet{1}.ATTR.name=nodeSetName1;
febio_spec.Mesh.NodeSet{1}.VAL=mrow(bcSupportList_X);

febio_spec.Mesh.NodeSet{2}.ATTR.name=nodeSetName2;
febio_spec.Mesh.NodeSet{2}.VAL=mrow(bcSupportList_Y);

febio_spec.Mesh.NodeSet{3}.ATTR.name=nodeSetName3;
febio_spec.Mesh.NodeSet{3}.VAL=mrow(bcSupportList_Z);

febio_spec.Mesh.NodeSet{4}.ATTR.name=nodeSetName4;
febio_spec.Mesh.NodeSet{4}.VAL=mrow(bcPrescribeList);

%MeshDomains section
febio_spec.MeshDomains.SolidDomain.ATTR.name=partName1;
febio_spec.MeshDomains.SolidDomain.ATTR.mat=materialName1;

%Boundary condition section
% -> Fix boundary conditions
febio_spec.Boundary.bc{1}.ATTR.name='zero_displacement_x';
febio_spec.Boundary.bc{1}.ATTR.type='zero displacement';
febio_spec.Boundary.bc{1}.ATTR.node_set=nodeSetName1;
febio_spec.Boundary.bc{1}.x_dof=1;
febio_spec.Boundary.bc{1}.y_dof=0;
febio_spec.Boundary.bc{1}.z_dof=0;

febio_spec.Boundary.bc{2}.ATTR.name='zero_displacement_y';
febio_spec.Boundary.bc{2}.ATTR.type='zero displacement';
febio_spec.Boundary.bc{2}.ATTR.node_set=nodeSetName2;
febio_spec.Boundary.bc{2}.x_dof=0;
febio_spec.Boundary.bc{2}.y_dof=1;
febio_spec.Boundary.bc{2}.z_dof=0;

febio_spec.Boundary.bc{3}.ATTR.name='zero_displacement_z';
febio_spec.Boundary.bc{3}.ATTR.type='zero displacement';
febio_spec.Boundary.bc{3}.ATTR.node_set=nodeSetName3;
febio_spec.Boundary.bc{3}.x_dof=0;
febio_spec.Boundary.bc{3}.y_dof=0;
febio_spec.Boundary.bc{3}.z_dof=1;

febio_spec.Boundary.bc{4}.ATTR.name='prescibed_displacement_z';
febio_spec.Boundary.bc{4}.ATTR.type='prescribed displacement';
febio_spec.Boundary.bc{4}.ATTR.node_set=nodeSetName4;
febio_spec.Boundary.bc{4}.dof='z';
febio_spec.Boundary.bc{4}.value.ATTR.lc=1;
febio_spec.Boundary.bc{4}.value.VAL=displacementMagnitude;
febio_spec.Boundary.bc{4}.relative=0;

%LoadData section
% -> load_controller
febio_spec.LoadData.load_controller{1}.ATTR.name='LC_1';
febio_spec.LoadData.load_controller{1}.ATTR.id=1;
febio_spec.LoadData.load_controller{1}.ATTR.type='loadcurve';
febio_spec.LoadData.load_controller{1}.interpolate='LINEAR';
%febio_spec.LoadData.load_controller{1}.extend='CONSTANT';
febio_spec.LoadData.load_controller{1}.points.pt.VAL=[0 0; 1 1];

%Output section
% -> log file
febio_spec.Output.logfile.ATTR.file=febioLogFileName;
febio_spec.Output.logfile.node_data{1}.ATTR.file=febioLogFileName_disp;
febio_spec.Output.logfile.node_data{1}.ATTR.data='ux;uy;uz';
febio_spec.Output.logfile.node_data{1}.ATTR.delim=',';

febio_spec.Output.logfile.node_data{2}.ATTR.file=febioLogFileName_force;
febio_spec.Output.logfile.node_data{2}.ATTR.data='Rx;Ry;Rz';
febio_spec.Output.logfile.node_data{2}.ATTR.delim=',';

febio_spec.Output.logfile.element_data{1}.ATTR.file=febioLogFileName_stress;
febio_spec.Output.logfile.element_data{1}.ATTR.data='sz';
febio_spec.Output.logfile.element_data{1}.ATTR.delim=',';

febio_spec.Output.logfile.element_data{2}.ATTR.file=febioLogFileName_stretch;
febio_spec.Output.logfile.element_data{2}.ATTR.data='Uz';
febio_spec.Output.logfile.element_data{2}.ATTR.delim=',';

% Plotfile section
febio_spec.Output.plotfile.compression=0;

Quick viewing of the FEBio input file structure

The febView function can be used to view the xml structure in a MATLAB figure window.

febView(febio_spec); %Viewing the febio file

Exporting the FEBio input file

Exporting the febio_spec structure to an FEBio input file is done using the febioStruct2xml function.

febioStruct2xml(febio_spec,febioFebFileName); %Exporting to file and domNode
%system(['gedit ',febioFebFileName,' &']);

Running the FEBio analysis

To run the analysis defined by the created FEBio input file the runMonitorFEBio function is used. The input for this function is a structure defining job settings e.g. the FEBio input file name. The optional output runFlag informs the user if the analysis was run succesfully.

febioAnalysis.run_filename=febioFebFileName; %The input file name
febioAnalysis.run_logname=febioLogFileName; %The name for the log file
febioAnalysis.disp_on=1; %Display information on the command window
febioAnalysis.runMode=runMode;
febioAnalysis.maxLogCheckTime=10; %Max log file checking time

[runFlag]=runMonitorFEBio(febioAnalysis);%START FEBio NOW!!!!!!!!
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-------->    RUNNING/MONITORING FEBIO JOB    <-------- 31-May-2023 15:54:04
FEBio path: /home/kevin/FEBioStudio/bin/febio4
# Attempt removal of existing log files                31-May-2023 15:54:04
 * Removal succesful                                   31-May-2023 15:54:04
# Attempt removal of existing .xplt files              31-May-2023 15:54:04
 * Removal succesful                                   31-May-2023 15:54:04
# Starting FEBio...                                    31-May-2023 15:54:04
  Max. total analysis time is: Inf s
 * Waiting for log file creation                       31-May-2023 15:54:04
   Max. wait time: 10 s
 * Log file found.                                     31-May-2023 15:54:04
# Parsing log file...                                  31-May-2023 15:54:04
    number of iterations   : 3                         31-May-2023 15:54:04
    number of reformations : 3                         31-May-2023 15:54:04
------- converged at time : 0.1                        31-May-2023 15:54:04
    number of iterations   : 3                         31-May-2023 15:54:04
    number of reformations : 3                         31-May-2023 15:54:04
------- converged at time : 0.2                        31-May-2023 15:54:04
    number of iterations   : 3                         31-May-2023 15:54:04
    number of reformations : 3                         31-May-2023 15:54:04
------- converged at time : 0.3                        31-May-2023 15:54:04
    number of iterations   : 3                         31-May-2023 15:54:04
    number of reformations : 3                         31-May-2023 15:54:04
------- converged at time : 0.4                        31-May-2023 15:54:04
    number of iterations   : 3                         31-May-2023 15:54:04
    number of reformations : 3                         31-May-2023 15:54:04
------- converged at time : 0.5                        31-May-2023 15:54:04
    number of iterations   : 3                         31-May-2023 15:54:04
    number of reformations : 3                         31-May-2023 15:54:04
------- converged at time : 0.6                        31-May-2023 15:54:04
    number of iterations   : 3                         31-May-2023 15:54:04
    number of reformations : 3                         31-May-2023 15:54:04
------- converged at time : 0.7                        31-May-2023 15:54:04
    number of iterations   : 3                         31-May-2023 15:54:04
    number of reformations : 3                         31-May-2023 15:54:04
------- converged at time : 0.8                        31-May-2023 15:54:04
    number of iterations   : 3                         31-May-2023 15:54:04
    number of reformations : 3                         31-May-2023 15:54:04
------- converged at time : 0.9                        31-May-2023 15:54:04
    number of iterations   : 3                         31-May-2023 15:54:04
    number of reformations : 3                         31-May-2023 15:54:04
------- converged at time : 1                          31-May-2023 15:54:04
 Elapsed time : 0:00:00                                31-May-2023 15:54:04
 N O R M A L   T E R M I N A T I O N
# Done                                                 31-May-2023 15:54:04
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Import FEBio results

if runFlag==1 %i.e. a succesful run
    % Importing nodal displacements from a log file
    dataStruct=importFEBio_logfile(fullfile(savePath,febioLogFileName_disp),0,1);

    %Access data
    N_disp_mat=dataStruct.data; %Displacement
    timeVec=dataStruct.time; %Time

    %Create deformed coordinate set
    V_DEF=N_disp_mat+repmat(V,[1 1 size(N_disp_mat,3)]);

Plotting the simulated results using anim8 to visualize and animate deformations

    DN_magnitude=sqrt(sum(N_disp_mat(:,:,end).^2,2)); %Current displacement magnitude

    % Create basic view and store graphics handle to initiate animation
    hf=cFigure; %Open figure
    gtitle([febioFebFileNamePart,': Press play to animate']);
    title('Displacement magnitude [mm]','Interpreter','Latex')
    hp=gpatch(Fb,V_DEF(:,:,end),DN_magnitude,'k',1,2); %Add graphics object to animate
    hp.Marker='.';
    hp.MarkerSize=markerSize2;
    hp.FaceColor='interp';
    gpatch(Fb,V,0.5*ones(1,3),'none',0.25); %A static graphics object

    axisGeom(gca,fontSize);
    colormap(cMap); colorbar;
    caxis([0 max(DN_magnitude)]); caxis manual;
    axis(axisLim(V_DEF)); %Set axis limits statically
    view(140,30);
    camlight headlight;

    % Set up animation features
    animStruct.Time=timeVec; %The time vector
    for qt=1:1:size(N_disp_mat,3) %Loop over time increments
        DN_magnitude=sqrt(sum(N_disp_mat(:,:,qt).^2,2)); %Current displacement magnitude

        %Set entries in animation structure
        animStruct.Handles{qt}=[hp hp]; %Handles of objects to animate
        animStruct.Props{qt}={'Vertices','CData'}; %Properties of objects to animate
        animStruct.Set{qt}={V_DEF(:,:,qt),DN_magnitude}; %Property values for to set in order to animate
    end
    anim8(hf,animStruct); %Initiate animation feature
    drawnow;

Importing element stress from a log file

    dataStruct=importFEBio_logfile(fullfile(savePath,febioLogFileName_stress),0,1);

    %Access data
    E_stress_mat=dataStruct.data;

Importing element stretch from a log file

    dataStruct=importFEBio_logfile(fullfile(savePath,febioLogFileName_stretch),0,1);

    %Access data
    E_stretch_mat=dataStruct.data;

Plotting the simulated results using anim8 to visualize and animate deformations

    [CV]=faceToVertexMeasure(E,V,E_stress_mat(:,:,end));

    % Create basic view and store graphics handle to initiate animation
    hf=cFigure; %Open figure  /usr/local/MATLAB/R2020a/bin/glnxa64/jcef_helper: symbol lookup error: /lib/x86_64-linux-gnu/libpango-1.0.so.0: undefined symbol: g_ptr_array_copy

    gtitle([febioFebFileNamePart,': Press play to animate']);
    title('$\sigma_{zz}$ [MPa]','Interpreter','Latex')
    hp=gpatch(Fb,V_DEF(:,:,end),CV,'k',1,2); %Add graphics object to animate
    hp.Marker='.';
    hp.MarkerSize=markerSize2;
    hp.FaceColor='interp';
    gpatch(Fb,V,0.5*ones(1,3),'none',0.25); %A static graphics object

    axisGeom(gca,fontSize);
    colormap(cMap); colorbar;
    caxis([min(E_stress_mat(:)) max(E_stress_mat(:))]);
    axis(axisLim(V_DEF)); %Set axis limits statically
    view(140,30);
    camlight headlight;

    % Set up animation features
    animStruct.Time=timeVec; %The time vector
    for qt=1:1:size(N_disp_mat,3) %Loop over time increments

        [CV]=faceToVertexMeasure(E,V,E_stress_mat(:,:,qt));

        %Set entries in animation structure
        animStruct.Handles{qt}=[hp hp]; %Handles of objects to animate
        animStruct.Props{qt}={'Vertices','CData'}; %Properties of objects to animate
        animStruct.Set{qt}={V_DEF(:,:,qt),CV}; %Property values for to set in order to animate
    end
    anim8(hf,animStruct); %Initiate animation feature
    drawnow;

Visualize stretch-stress curve

    stretch_sim=squeeze(mean(E_stretch_mat,1)); % Stretch U_z
    stress_cauchy_sim=squeeze(mean(E_stress_mat,1)); %Cauchy stress sigma_z

Visualize stress-stretch curve

    cFigure; hold on;
    title('Stretch stress curves optimisation','FontSize',fontSize);
    xlabel('\lambda Stretch [.]','FontSize',fontSize); ylabel('\sigma Cauchy stress [MPa]','FontSize',fontSize); zlabel('Z','FontSize',fontSize); hold on;

    Hn(1)=plot(stretch_exp,stress_cauchy_exp,'k-','lineWidth',lineWidth);
    view(2); axis tight;  grid on; axis square; axis manual;
    Hn(2)=plot(stretch_sim,stress_cauchy_sim,'r.-','lineWidth',lineWidth2,'markerSize',markerSize2);
    legend(Hn,{'Experiment','Simulation'},'Location','northwest');
    set(gca,'FontSize',fontSize);
    drawnow;
end

Create structures for optimization

% Material structure
mat_struct.id=1; %Material id
mat_struct.par_names={'c1','m1','c2','m2','k'}; %Parameter names
mat_struct.par_values={c1_ini m1_ini c1_ini -m1_ini k_ini}; %Parameter values

febioAnalysis.disp_on=0;
febioAnalysis.disp_log_on=0;

%What should be known to the objective function:
objectiveStruct.h=Hn(2);
objectiveStruct.stretch_exp=stretch_exp;
objectiveStruct.stress_cauchy_exp=stress_cauchy_exp;
objectiveStruct.febioAnalysis=febioAnalysis;
objectiveStruct.febio_spec=febio_spec;
objectiveStruct.febioFebFileName=febioFebFileName;
objectiveStruct.mat_struct=mat_struct;
objectiveStruct.k_factor=k_factor;
objectiveStruct.parNormFactors=P; %This will normalize the parameters to ones(size(P))
objectiveStruct.Pb_struct.xx_c=P; %Parameter constraining centre
objectiveStruct.Pb_struct.xxlim=[P(1)/100 P(1)*100;...
                                 2        50      ]; %Parameter bounds

%Optimisation settings
maxNumberIterations=100; %Maximum number of optimization iterations
maxNumberFunctionEvaluations=maxNumberIterations*10; %Maximum number of function evaluations, N.B. multiple evaluations are used per iteration
functionTolerance=1e-6; %Tolerance on objective function value
parameterTolerance=1e-6; %Tolerance on parameter variation
displayTypeIterations='iter';

objectiveStruct.method=2;

%File names of output files
output_names.stress=fullfile(savePath,febioLogFileName_stress);
output_names.stretch=fullfile(savePath,febioLogFileName_stretch);
objectiveStruct.run_output_names=output_names;

start optimization

Pn=P./objectiveStruct.parNormFactors;

switch objectiveStruct.method
    case 1 %fminsearch and Nelder-Mead
        OPT_options=optimset('fminsearch'); % 'Nelder-Mead simplex direct search'
        OPT_options = optimset(OPT_options,'MaxFunEvals',maxNumberFunctionEvaluations,...
            'MaxIter',maxNumberIterations,...
            'TolFun',functionTolerance,...
            'TolX',parameterTolerance,...
            'Display',displayTypeIterations,...
            'FinDiffRelStep',1e-2,...
            'DiffMaxChange',0.5);
        [Pn_opt,OPT_out.fval,OPT_out.exitflag,OPT_out.output]= fminsearch(@(Pn) objectiveFunctionIFEA(Pn,objectiveStruct),Pn,OPT_options);
    case 2 %lsqnonlin and Levenberg-Marquardt
        OPT_options = optimoptions(@lsqnonlin,'Algorithm','levenberg-marquardt');
        OPT_options = optimoptions(OPT_options,'MaxFunEvals',maxNumberFunctionEvaluations,...
            'MaxIter',maxNumberIterations,...
            'TolFun',functionTolerance,...
            'TolX',parameterTolerance,...
            'Display',displayTypeIterations,...
            'FinDiffRelStep',1e-2,...
            'DiffMaxChange',0.5);
        [Pn_opt,OPT_out.resnorm,OPT_out.residual]= lsqnonlin(@(Pn) objectiveFunctionIFEA(Pn,objectiveStruct),Pn,[],[],OPT_options);
end
[Fopt,OPT_stats_out]=objectiveFunctionIFEA(Pn_opt,objectiveStruct);

Unnormalize and constrain parameters

P_opt=Pn_opt.*objectiveStruct.parNormFactors; %Scale back, undo normalization

%Constraining parameters
for q=1:1:numel(P)
    [P(q)]=boxconstrain(P(q),objectiveStruct.Pb_struct.xxlim(q,1),objectiveStruct.Pb_struct.xxlim(q,2),objectiveStruct.Pb_struct.xx_c(q));
end

disp_text=sprintf('%6.16e,',P_opt); disp_text=disp_text(1:end-1);
disp(['P_opt=',disp_text]);
P_opt=2.8909803100416506e-04,6.0065568084440022e+00
cFigure; hold on;
title('Stretch stress curves optimised','FontSize',fontSize);
xlabel('\lambda Stretch [.]','FontSize',fontSize); ylabel('\sigma Cauchy stress [MPa]','FontSize',fontSize); zlabel('Z','FontSize',fontSize); hold on;

Hn(1)=plot(stretch_exp,stress_cauchy_exp,'k-','lineWidth',lineWidth);
Hn(2)=plot(OPT_stats_out.stretch_sim,OPT_stats_out.stress_cauchy_sim,'r.-','lineWidth',lineWidth2,'markerSize',markerSize2);

legend(Hn,{'Experiment','Simulation'},'Location','northwest');
view(2); axis tight;  grid on; axis square; axis manual;
set(gca,'FontSize',fontSize);
drawnow;
function [Fopt,OPT_stats_out]=objectiveFunctionIFEA(Pn,objectiveStruct)
febioFebFileName=objectiveStruct.febioFebFileName;
febio_spec=objectiveStruct.febio_spec;

Unnormalize and constrain parameters

P=Pn.*objectiveStruct.parNormFactors; %Scale back, undo normalization
P_in=P; %Proposed P

%Constraining parameters
for q=1:1:numel(P)
    [P(q)]=boxconstrain(P(q),objectiveStruct.Pb_struct.xxlim(q,1),objectiveStruct.Pb_struct.xxlim(q,2),objectiveStruct.Pb_struct.xx_c(q));
end

Setting material parameters

%Acces material parameters
mat_struct=objectiveStruct.mat_struct;
mat_struct.par_values={P(1) P(2) P(1) -P(2) P(1)*objectiveStruct.k_factor};

disp('SETTING MATERIAL PARAMETERS...');
disp(['Proposed (norm.): ',sprintf(repmat('%6.16e ',[1,numel(Pn)]),Pn)]);
disp(['Proposed        : ',sprintf(repmat('%6.16e ',[1,numel(P_in)]),P_in)]);
disp(['Set (constr.)   : ',sprintf(repmat('%6.16e ',[1,numel(P)]),P)]);

%Assign material parameters
matId=mat_struct.id;
for q=1:1:numel(mat_struct.par_names)
    parNameNow=mat_struct.par_names{q};
    parValuesNow=mat_struct.par_values{q};
    febio_spec.Material.material{matId}.(parNameNow)=mat2strIntDouble(parValuesNow);
end
febioStruct2xml(febio_spec,febioFebFileName); %Exporting to file and domNode

disp('Done')
SETTING MATERIAL PARAMETERS...
Proposed (norm.): 1.0000000000000000e+00 1.0000000000000000e+00 
Proposed        : 6.4464428523599996e-04 3.0000000000000000e+00 
Set (constr.)   : 6.4464428523599996e-04 3.0000000000000000e+00 
Done
SETTING MATERIAL PARAMETERS...
Proposed (norm.): 1.0100000000000000e+00 1.0000000000000000e+00 
Proposed        : 6.5109072808836000e-04 3.0000000000000000e+00 
Set (constr.)   : 6.5109072806643559e-04 3.0000000000000000e+00 
Done
SETTING MATERIAL PARAMETERS...
Proposed (norm.): 1.0000000000000000e+00 1.0100000000000000e+00 
Proposed        : 6.4464428523599996e-04 3.0300000000000002e+00 
Set (constr.)   : 6.4464428523599996e-04 3.0299999959257593e+00 
Done
SETTING MATERIAL PARAMETERS...
Proposed (norm.): 9.9938198939115996e-01 9.9990320940432753e-01 
Proposed        : 6.4424588822879596e-04 2.9997096282129827e+00 
Set (constr.)   : 6.4424588828054666e-04 2.9997096282211437e+00 
Done
SETTING MATERIAL PARAMETERS...
Proposed (norm.): 1.0093819893911600e+00 9.9990320940432753e-01 
Proposed        : 6.5069233108115600e-04 2.9997096282129827e+00 
Set (constr.)   : 6.5069233106305037e-04 2.9997096282211437e+00 
Done
SETTING MATERIAL PARAMETERS...
Proposed (norm.): 9.9938198939115996e-01 1.0099032094043274e+00 
Proposed        : 6.4424588822879596e-04 3.0297096282129825e+00 
Set (constr.)   : 6.4424588828054666e-04 3.0297096242559047e+00 
Done
SETTING MATERIAL PARAMETERS...
Proposed (norm.): 9.9330917958767229e-01 9.9895423478641654e-01 
Proposed        : 6.4033108609365256e-04 2.9968627043592497e+00 
Set (constr.)   : 6.4033115176239178e-04 2.9968627146522828e+00 
Done
SETTING MATERIAL PARAMETERS...
Proposed (norm.): 1.0033091795876723e+00 9.9895423478641654e-01 
Proposed        : 6.4677752894601250e-04 2.9968627043592497e+00 
Set (constr.)   : 6.4677752894521799e-04 2.9968627146522828e+00 
Done
SETTING MATERIAL PARAMETERS...
Proposed (norm.): 9.9330917958767229e-01 1.0089542347864164e+00 
Proposed        : 6.4033108609365256e-04 3.0268627043592495e+00 
Set (constr.)   : 6.4033115176239178e-04 3.0268627014342071e+00 
Done
SETTING MATERIAL PARAMETERS...
Proposed (norm.): 9.4169235373033311e-01 9.9106873757067060e-01 
Proposed        : 6.0705659428269708e-04 2.9732062127120118e+00 
Set (constr.)   : 6.0709999559465256e-04 2.9732126226874609e+00 
Done
SETTING MATERIAL PARAMETERS...
Proposed (norm.): 9.5169235373033312e-01 9.9106873757067060e-01 
Proposed        : 6.1350303713505702e-04 2.9732062127120118e+00 
Set (constr.)   : 6.1352772950092440e-04 2.9732126226874609e+00 
Done
SETTING MATERIAL PARAMETERS...
Proposed (norm.): 9.4169235373033311e-01 1.0010687375706706e+00 
Proposed        : 6.0705659428269708e-04 3.0032062127120120e+00 
Set (constr.)   : 6.0709999559465256e-04 3.0032062127070387e+00 
Done
SETTING MATERIAL PARAMETERS...
Proposed (norm.): 7.5376621666648802e-01 9.6884319671767283e-01 
Proposed        : 4.8591108397801205e-04 2.9065295901530184e+00 
Set (constr.)   : 4.8910525924269696e-04 2.9068008504117495e+00 
Done
SETTING MATERIAL PARAMETERS...
Proposed (norm.): 7.6376621666648803e-01 9.6884319671767283e-01 
Proposed        : 4.9235752683037210e-04 2.9065295901530184e+00 
Set (constr.)   : 4.9518355627003021e-04 2.9068008504117495e+00 
Done
SETTING MATERIAL PARAMETERS...
Proposed (norm.): 7.5376621666648802e-01 9.7884319671767284e-01 
Proposed        : 4.8591108397801205e-04 2.9365295901530186e+00 
Set (constr.)   : 4.8910525924269696e-04 2.9366146830695263e+00 
Done
SETTING MATERIAL PARAMETERS...
Proposed (norm.): 6.3381239446636395e-01 1.0097124215516684e+00 
Proposed        : 4.0858353800448684e-04 3.0291372646550050e+00 
Set (constr.)   : 4.1879091583189810e-04 3.0291372609222518e+00 
Done
SETTING MATERIAL PARAMETERS...
Proposed (norm.): 6.4381239446636396e-01 1.0097124215516684e+00 
Proposed        : 4.1502998085684683e-04 3.0291372646550050e+00 
Set (constr.)   : 4.2445004430345711e-04 3.0291372609222518e+00 
Done
SETTING MATERIAL PARAMETERS...
Proposed (norm.): 6.3381239446636395e-01 1.0198095457671852e+00 
Proposed        : 4.0858353800448684e-04 3.0594286373015556e+00 
Set (constr.)   : 4.1879091583189810e-04 3.0594286056299511e+00 
Done
SETTING MATERIAL PARAMETERS...
Proposed (norm.): 5.7633128093430652e-01 1.3718081475429156e+00 
Proposed        : 3.7152866665704433e-04 4.1154244426287470e+00 
Set (constr.)   : 3.8706433944149288e-04 4.1152150768633575e+00 
Done
SETTING MATERIAL PARAMETERS...
Proposed (norm.): 5.8633128093430653e-01 1.3718081475429156e+00 
Proposed        : 3.7797510950940432e-04 4.1154244426287470e+00 
Set (constr.)   : 3.9248258017452137e-04 4.1152150768633575e+00 
Done
SETTING MATERIAL PARAMETERS...
Proposed (norm.): 5.7633128093430652e-01 1.3855262290183448e+00 
Proposed        : 3.7152866665704433e-04 4.1565786870550347e+00 
Set (constr.)   : 3.8706433944149288e-04 4.1563452856846315e+00 
Done
SETTING MATERIAL PARAMETERS...
Proposed (norm.): 4.7018609794163391e-01 1.9767061026089379e+00 
Proposed        : 3.0310278103548848e-04 5.9301183078268132e+00 
Set (constr.)   : 3.3236147055638095e-04 5.9263280927469886e+00 
Done
SETTING MATERIAL PARAMETERS...
Proposed (norm.): 4.8018609794163392e-01 1.9767061026089379e+00 
Proposed        : 3.0954922388784847e-04 5.9301183078268132e+00 
Set (constr.)   : 3.3728860231407951e-04 5.9263280927469886e+00 
Done
SETTING MATERIAL PARAMETERS...
Proposed (norm.): 4.7018609794163391e-01 1.9964731636350272e+00 
Proposed        : 3.0310278103548848e-04 5.9894194909050817e+00 
Set (constr.)   : 3.3236147055638095e-04 5.9853947177135014e+00 
Done
SETTING MATERIAL PARAMETERS...
Proposed (norm.): 4.4898899892561145e-01 2.0006046437868812e+00 
Proposed        : 2.8943819229122796e-04 6.0018139313606440e+00 
Set (constr.)   : 3.2207795762981631e-04 5.9977389436561479e+00 
Done
SETTING MATERIAL PARAMETERS...
Proposed (norm.): 4.5898899892561146e-01 2.0006046437868812e+00 
Proposed        : 2.9588463514358795e-04 6.0018139313606440e+00 
Set (constr.)   : 3.2690203990156600e-04 5.9977389436561479e+00 
Done
SETTING MATERIAL PARAMETERS...
Proposed (norm.): 4.4898899892561145e-01 2.0206106902247498e+00 
Proposed        : 2.8943819229122796e-04 6.0618320706742495e+00 
Set (constr.)   : 3.2207795762981631e-04 6.0575080224553499e+00 
Done
SETTING MATERIAL PARAMETERS...
Proposed (norm.): 4.4846132607586559e-01 2.0021856028146674e+00 
Proposed        : 2.8909803100416506e-04 6.0065568084440022e+00 
Set (constr.)   : 3.2182476307718294e-04 6.0024624958101400e+00 
Done
SETTING MATERIAL PARAMETERS...
Proposed (norm.): 4.5846132607586559e-01 2.0021856028146674e+00 
Proposed        : 2.9554447385652511e-04 6.0065568084440022e+00 
Set (constr.)   : 3.2664626526004271e-04 6.0024624958101400e+00 
Done
SETTING MATERIAL PARAMETERS...
Proposed (norm.): 4.4846132607586559e-01 2.0222074588428143e+00 
Proposed        : 2.8909803100416506e-04 6.0666223765284428e+00 
Set (constr.)   : 3.2182476307718294e-04 6.0622780243797134e+00 
Done
SETTING MATERIAL PARAMETERS...
Proposed (norm.): 4.4846132607586559e-01 2.0021856028146674e+00 
Proposed        : 2.8909803100416506e-04 6.0065568084440022e+00 
Set (constr.)   : 3.2182476307718294e-04 6.0024624958101400e+00 
Done

START FEBio

[runFlag]=runMonitorFEBio(objectiveStruct.febioAnalysis);

%pause(0.1);

stretch_exp=objectiveStruct.stretch_exp;
stress_cauchy_exp=objectiveStruct.stress_cauchy_exp;

if runFlag==1

    % Importing element stress from a log file
    [~, E_stress_mat,~]=importFEBio_logfile(objectiveStruct.run_output_names.stress,0,1);

    % Importing element stress from a log file
    [~, E_stretch_mat,~]=importFEBio_logfile(objectiveStruct.run_output_names.stretch,0,1);

    stretch_sim=squeeze(mean(E_stretch_mat,1)); % Stretch U_z
    stress_cauchy_sim=squeeze(mean(E_stress_mat,1)); %Cauchy stress sigma_z

    if ~isempty(objectiveStruct.h)
        objectiveStruct.h.XData=stretch_sim;
        objectiveStruct.h.YData=stress_cauchy_sim;
        drawnow;
    end

    %Interpolate experiment onto simulated points
    stress_cauchy_sim_exp = interp1(stretch_sim,stress_cauchy_sim,stretch_exp,'pchip');

    %Derive Fopt
    stressDev=stress_cauchy_exp-stress_cauchy_sim_exp;

    switch objectiveStruct.method
        case 1
            Fopt=sum((stressDev).^2); %Sum of squared differences
        case 2
            Fopt=stressDev(:);%(stressDev).^2; %Squared differences
    end

    OPT_stats_out.stress_cauchy_sim=stress_cauchy_sim;
    OPT_stats_out.stretch_sim=stretch_sim;
    OPT_stats_out.stressDev=stressDev;
    OPT_stats_out.Fopt=Fopt;

else %Output NaN
    switch objectiveStruct.method
        case 1
            Fopt=NaN;
        case 2
            Fopt=NaN(size(stress_cauchy_exp)); %Squared differences
    end
    OPT_stats_out=[];
end
end
                                        First-order                     Norm of 
 Iteration  Func-count      Resnorm      optimality       Lambda           step
     0           3      2.30665e-06        6.19e-06         0.01
     1           6      2.29882e-06        6.18e-06        0.001    0.000625544
     2           9      2.22262e-06        6.07e-06       0.0001     0.00614651
     3          12      1.63058e-06        5.14e-06        1e-05      0.0522157
     4          15      3.08386e-07        1.85e-06        1e-06       0.189236
     5          18      7.90879e-08        1.61e-07        1e-07       0.126725
     6          21      4.21922e-08         7.9e-08        1e-08        0.36663
     7          24      1.30793e-08        2.59e-07        1e-09        0.61414
     8          27      8.91615e-09        2.73e-09        1e-10      0.0319446
     9          30      8.91549e-09        5.99e-12        1e-11     0.00166669

Local minimum found.

Optimization completed because the size of the gradient is less than
1e-4 times the value of the function tolerance.

GIBBON www.gibboncode.org

Kevin Mattheus Moerman, [email protected]

GIBBON footer text

License: https://github.com/gibbonCode/GIBBON/blob/master/LICENSE

GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for image segmentation, image-based modeling, meshing, and finite element analysis.

Copyright (C) 2006-2023 Kevin Mattheus Moerman and the GIBBON contributors

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.