DEMO_febio_0043_pyra5_element

Below is a demonstration for:

Contents

Keywords

clear; close all; clc;

Plot settings

fontSize=20;
faceAlpha1=0.5;
markerSize=40;
markerSize2=35;
lineWidth=3;
cMap=viridis(20); %colormap
cMapMod=gjet(20); %colormap

Control parameters

% Path names
defaultFolder = fileparts(fileparts(mfilename('fullpath')));
savePath=fullfile(defaultFolder,'data','temp');

% Defining file names
febioFebFileNamePart='tempModel';
febioFebFileName=fullfile(savePath,[febioFebFileNamePart,'.feb']); %FEB file name
febioLogFileName=[febioFebFileNamePart,'.txt']; %FEBio log file name
febioLogFileName_disp=[febioFebFileNamePart,'_disp_out.txt']; %Log file name for exporting displacement
febioLogFileName_stress=[febioFebFileNamePart,'_stress_out.txt']; %Log file name for exporting stress sigma_z
febioLogFileName_stretch=[febioFebFileNamePart,'_stretch_out.txt']; %Log file name for exporting stretch U_z
febioLogFileName_stress_prin=[febioFebFileNamePart,'_stress_prin_out.txt']; %Log file name for exporting principal stresses
febioLogFileName_stretch_prin=[febioFebFileNamePart,'_stretch_prin_out.txt']; %Log file name for exporting principal stretches
febioLogFileName_force=[febioFebFileNamePart,'_force_out.txt']; %Log file name for exporting force

%Specifying dimensions and number of elements
pointSpacing=10;
height=10;
displacementMagnitude=3; %The displacement magnitude

%Material parameter set
E_youngs1=0.1; %Material Young's modulus
nu1=0.4; %Material Poisson's ratio

% FEA control settings
numTimeSteps=10; %Number of time steps desired
max_refs=25; %Max reforms
max_ups=0; %Set to zero to use full-Newton iterations
opt_iter=6; %Optimum number of iterations
max_retries=5; %Maximum number of retires
dtmin=(1/numTimeSteps)/100; %Minimum time step size
dtmax=1/numTimeSteps; %Maximum time step size

runMode='external';% 'internal' or 'external'

Creating model geometry and mesh

A set of two pyramids is created

% Create a pyramid element
V=[pointSpacing/2.*[1,-1,0;1,1,0;-1,1,0;-1,-1,0]; 0 0 pointSpacing/sqrt(2); 0 0 -pointSpacing/sqrt(2)];
E=[1 2 3 4 5; 4 3 2 1 6;];

[F,C,CF]=element2patch(E,(1:1:size(E,1))','pyra5');

Plotting model boundary surfaces and a cut view

cFigure;
subplot(1,2,1); hold on;
title('Boundary faces and element labels','FontSize',fontSize);
gpatch(F,V,C,'k',faceAlpha1);
patchNormPlot(F,V);
axisGeom(gca,fontSize); camlight headlight;
colormap(gca,cMapMod); icolorbar;

subplot(1,2,2); hold on;
title('Boundary faces and type labels','FontSize',fontSize);
gpatch(F,V,CF,'k',1);
axisGeom(gca,fontSize); camlight headlight;
colormap(gca,cMapMod); icolorbar;
gdrawnow;

Defining the boundary conditions

The visualization of the model boundary shows colors for each side of the cube. These labels can be used to define boundary conditions.

%Define supported node sets
bcSupportList=[5 6];

%Prescribed displacement nodes
bcPrescribeList=[1 2 3 4];

Visualizing boundary conditions. Markers plotted on the semi-transparent model denote the nodes in the various boundary condition lists.

hf=cFigure;
title('Boundary conditions','FontSize',fontSize);
xlabel('X','FontSize',fontSize); ylabel('Y','FontSize',fontSize); zlabel('Z','FontSize',fontSize);
hold on;

gpatch(F,V,'kw','k',0.5);

hl(1)=plotV(V(bcSupportList,:),'r.','MarkerSize',markerSize);
hl(2)=plotV(V(bcPrescribeList,:),'k.','MarkerSize',markerSize);

legend(hl,{'BC xyz support','BC x prescribe'});

axisGeom(gca,fontSize);
camlight headlight;
drawnow;

Defining the FEBio input structure

See also febioStructTemplate and febioStruct2xml and the FEBio user manual.

%Get a template with default settings
[febio_spec]=febioStructTemplate;

%febio_spec version
febio_spec.ATTR.version='4.0';

%Module section
febio_spec.Module.ATTR.type='solid';

%Control section
febio_spec.Control.analysis='STATIC';
febio_spec.Control.time_steps=numTimeSteps;
febio_spec.Control.step_size=1/numTimeSteps;
febio_spec.Control.solver.max_refs=max_refs;
febio_spec.Control.solver.qn_method.max_ups=max_ups;
febio_spec.Control.time_stepper.dtmin=dtmin;
febio_spec.Control.time_stepper.dtmax=dtmax;
febio_spec.Control.time_stepper.max_retries=max_retries;
febio_spec.Control.time_stepper.opt_iter=opt_iter;

%Material section
materialName1='Material1';
febio_spec.Material.material{1}.ATTR.name=materialName1;
febio_spec.Material.material{1}.ATTR.type='neo-Hookean';
febio_spec.Material.material{1}.ATTR.id=1;
febio_spec.Material.material{1}.E=E_youngs1;
febio_spec.Material.material{1}.v=nu1;

% Mesh section
% -> Nodes
febio_spec.Mesh.Nodes{1}.ATTR.name='Object1'; %The node set name
febio_spec.Mesh.Nodes{1}.node.ATTR.id=(1:size(V,1))'; %The node id's
febio_spec.Mesh.Nodes{1}.node.VAL=V; %The nodel coordinates

% -> Elements
partName1='Part1';
febio_spec.Mesh.Elements{1}.ATTR.name=partName1; %Name of this part
febio_spec.Mesh.Elements{1}.ATTR.type='pyra5'; %Element type
febio_spec.Mesh.Elements{1}.elem.ATTR.id=(1:1:size(E,1))'; %Element id's
febio_spec.Mesh.Elements{1}.elem.VAL=E; %The element matrix

% -> NodeSets
nodeSetName1='bcSupportList';
nodeSetName2='bcPrescribeList';

febio_spec.Mesh.NodeSet{1}.ATTR.name=nodeSetName1;
febio_spec.Mesh.NodeSet{1}.VAL=mrow(bcSupportList);

febio_spec.Mesh.NodeSet{2}.ATTR.name=nodeSetName2;
febio_spec.Mesh.NodeSet{2}.VAL=mrow(bcPrescribeList);

%MeshDomains section
febio_spec.MeshDomains.SolidDomain.ATTR.name=partName1;
febio_spec.MeshDomains.SolidDomain.ATTR.mat=materialName1;

%Boundary condition section
% -> Fix boundary conditions
febio_spec.Boundary.bc{1}.ATTR.name='zero_displacement_x';
febio_spec.Boundary.bc{1}.ATTR.type='zero displacement';
febio_spec.Boundary.bc{1}.ATTR.node_set=nodeSetName1;
febio_spec.Boundary.bc{1}.x_dof=1;
febio_spec.Boundary.bc{1}.y_dof=1;
febio_spec.Boundary.bc{1}.z_dof=1;

febio_spec.Boundary.bc{2}.ATTR.name='zero_displacement_zy';
febio_spec.Boundary.bc{2}.ATTR.type='zero displacement';
febio_spec.Boundary.bc{2}.ATTR.node_set=nodeSetName2;
febio_spec.Boundary.bc{2}.x_dof=0;
febio_spec.Boundary.bc{2}.y_dof=1;
febio_spec.Boundary.bc{2}.z_dof=1;

febio_spec.Boundary.bc{3}.ATTR.name='prescibed_displacement_x';
febio_spec.Boundary.bc{3}.ATTR.type='prescribed displacement';
febio_spec.Boundary.bc{3}.ATTR.node_set=nodeSetName2;
febio_spec.Boundary.bc{3}.dof='x';
febio_spec.Boundary.bc{3}.value.ATTR.lc=1;
febio_spec.Boundary.bc{3}.value.VAL=displacementMagnitude;
febio_spec.Boundary.bc{3}.relative=0;

%LoadData section
% -> load_controller
febio_spec.LoadData.load_controller{1}.ATTR.name='LC_1';
febio_spec.LoadData.load_controller{1}.ATTR.id=1;
febio_spec.LoadData.load_controller{1}.ATTR.type='loadcurve';
febio_spec.LoadData.load_controller{1}.interpolate='LINEAR';
%febio_spec.LoadData.load_controller{1}.extend='CONSTANT';
febio_spec.LoadData.load_controller{1}.points.pt.VAL=[0 0; 1 1];

%Output section
% -> log file
febio_spec.Output.logfile.ATTR.file=febioLogFileName;
febio_spec.Output.logfile.node_data{1}.ATTR.file=febioLogFileName_disp;
febio_spec.Output.logfile.node_data{1}.ATTR.data='ux;uy;uz';
febio_spec.Output.logfile.node_data{1}.ATTR.delim=',';

febio_spec.Output.logfile.node_data{2}.ATTR.file=febioLogFileName_force;
febio_spec.Output.logfile.node_data{2}.ATTR.data='Rx;Ry;Rz';
febio_spec.Output.logfile.node_data{2}.ATTR.delim=',';

febio_spec.Output.logfile.element_data{1}.ATTR.file=febioLogFileName_stress;
febio_spec.Output.logfile.element_data{1}.ATTR.data='sz';
febio_spec.Output.logfile.element_data{1}.ATTR.delim=',';

febio_spec.Output.logfile.element_data{2}.ATTR.file=febioLogFileName_stretch;
febio_spec.Output.logfile.element_data{2}.ATTR.data='Uz';
febio_spec.Output.logfile.element_data{2}.ATTR.delim=',';

febio_spec.Output.logfile.element_data{3}.ATTR.file=febioLogFileName_stress_prin;
febio_spec.Output.logfile.element_data{3}.ATTR.data='s1;s2;s3';
febio_spec.Output.logfile.element_data{3}.ATTR.delim=',';

febio_spec.Output.logfile.element_data{4}.ATTR.file=febioLogFileName_stretch_prin;
febio_spec.Output.logfile.element_data{4}.ATTR.data='U1;U2;U3';
febio_spec.Output.logfile.element_data{4}.ATTR.delim=',';

% Plotfile section
febio_spec.Output.plotfile.compression=0;

Quick viewing of the FEBio input file structure

The febView function can be used to view the xml structure in a MATLAB figure window.

febView(febio_spec); %Viewing the febio file

Exporting the FEBio input file

Exporting the febio_spec structure to an FEBio input file is done using the febioStruct2xml function.

febioStruct2xml(febio_spec,febioFebFileName); %Exporting to file and domNode
%system(['gedit ',febioFebFileName,' &']);

Running the FEBio analysis

To run the analysis defined by the created FEBio input file the runMonitorFEBio function is used. The input for this function is a structure defining job settings e.g. the FEBio input file name. The optional output runFlag informs the user if the analysis was run succesfully.

febioAnalysis.run_filename=febioFebFileName; %The input file name
febioAnalysis.run_logname=febioLogFileName; %The name for the log file
febioAnalysis.disp_on=1; %Display information on the command window
febioAnalysis.runMode=runMode;
febioAnalysis.maxLogCheckTime=10; %Max log file checking time

[runFlag]=runMonitorFEBio(febioAnalysis);%START FEBio NOW!!!!!!!!
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-------->    RUNNING/MONITORING FEBIO JOB    <-------- 27-Apr-2023 10:10:28
FEBio path: /home/kevin/FEBioStudio2/bin/febio4
# Attempt removal of existing log files                27-Apr-2023 10:10:28
 * Removal succesful                                   27-Apr-2023 10:10:28
# Attempt removal of existing .xplt files              27-Apr-2023 10:10:28
 * Removal succesful                                   27-Apr-2023 10:10:28
# Starting FEBio...                                    27-Apr-2023 10:10:28
  Max. total analysis time is: Inf s
 * Waiting for log file creation                       27-Apr-2023 10:10:28
   Max. wait time: 10 s
 * Log file found.                                     27-Apr-2023 10:10:28
# Parsing log file...                                  27-Apr-2023 10:10:28
    number of iterations   : 1                         27-Apr-2023 10:10:28
    number of reformations : 1                         27-Apr-2023 10:10:28
------- converged at time : 0.1                        27-Apr-2023 10:10:28
    number of iterations   : 1                         27-Apr-2023 10:10:28
    number of reformations : 1                         27-Apr-2023 10:10:28
------- converged at time : 0.2                        27-Apr-2023 10:10:28
    number of iterations   : 1                         27-Apr-2023 10:10:28
    number of reformations : 1                         27-Apr-2023 10:10:28
------- converged at time : 0.3                        27-Apr-2023 10:10:28
    number of iterations   : 1                         27-Apr-2023 10:10:28
    number of reformations : 1                         27-Apr-2023 10:10:28
------- converged at time : 0.4                        27-Apr-2023 10:10:28
    number of iterations   : 1                         27-Apr-2023 10:10:28
    number of reformations : 1                         27-Apr-2023 10:10:28
------- converged at time : 0.5                        27-Apr-2023 10:10:28
    number of iterations   : 1                         27-Apr-2023 10:10:28
    number of reformations : 1                         27-Apr-2023 10:10:28
------- converged at time : 0.6                        27-Apr-2023 10:10:28
    number of iterations   : 1                         27-Apr-2023 10:10:28
    number of reformations : 1                         27-Apr-2023 10:10:28
------- converged at time : 0.7                        27-Apr-2023 10:10:28
    number of iterations   : 1                         27-Apr-2023 10:10:28
    number of reformations : 1                         27-Apr-2023 10:10:28
------- converged at time : 0.8                        27-Apr-2023 10:10:28
    number of iterations   : 1                         27-Apr-2023 10:10:28
    number of reformations : 1                         27-Apr-2023 10:10:28
------- converged at time : 0.9                        27-Apr-2023 10:10:28
    number of iterations   : 1                         27-Apr-2023 10:10:28
    number of reformations : 1                         27-Apr-2023 10:10:28
------- converged at time : 1                          27-Apr-2023 10:10:28
 Elapsed time : 0:00:00                                27-Apr-2023 10:10:28
 N O R M A L   T E R M I N A T I O N
# Done                                                 27-Apr-2023 10:10:28
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Import FEBio results

if runFlag==1 %i.e. a succesful run
    % Importing nodal displacements from a log file
    dataStruct=importFEBio_logfile(fullfile(savePath,febioLogFileName_disp),0,1);

    %Access data
    N_disp_mat=dataStruct.data; %Displacement
    timeVec=dataStruct.time; %Time

    %Create deformed coordinate set
    V_DEF=N_disp_mat+repmat(V,[1 1 size(N_disp_mat,3)]);

Plotting the simulated results using anim8 to visualize and animate deformations

    DN_magnitude=sqrt(sum(N_disp_mat(:,:,end).^2,2)); %Current displacement magnitude

    % Create basic view and store graphics handle to initiate animation
    hf=cFigure; %Open figure
    gtitle([febioFebFileNamePart,': Press play to animate']);
    title('Displacement magnitude [mm]','Interpreter','Latex')
    hp=gpatch(F,V_DEF(:,:,end),DN_magnitude,'k',1,2); %Add graphics object to animate

    gpatch(F,V,0.5*ones(1,3),'none',0.25); %A static graphics object

    axisGeom(gca,fontSize);
    colormap(cMap); colorbar;
    caxis([0 max(DN_magnitude)]); caxis manual;
    axis(axisLim(V_DEF)); %Set axis limits statically
    camlight headlight;

    % Set up animation features
    animStruct.Time=timeVec; %The time vector
    for qt=1:1:size(N_disp_mat,3) %Loop over time increments
        DN_magnitude=sqrt(sum(N_disp_mat(:,:,qt).^2,2)); %Current displacement magnitude

        %Set entries in animation structure
        animStruct.Handles{qt}=[hp(1) hp(1) hp(2) hp(2)]; %Handles of objects to animate
        animStruct.Props{qt}={'Vertices','CData','Vertices','CData'}; %Properties of objects to animate
        animStruct.Set{qt}={V_DEF(:,:,qt),DN_magnitude,V_DEF(:,:,qt),DN_magnitude}; %Property values for to set in order to animate
    end
    anim8(hf,animStruct); %Initiate animation feature
    drawnow;
end

GIBBON www.gibboncode.org

Kevin Mattheus Moerman, [email protected]

GIBBON footer text

License: https://github.com/gibbonCode/GIBBON/blob/master/LICENSE

GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for image segmentation, image-based modeling, meshing, and finite element analysis.

Copyright (C) 2006-2022 Kevin Mattheus Moerman and the GIBBON contributors

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.