DEMO_febio_0057_diamond_lattice_compression_01
Below is a demonstration for:
- Building the geometry for the diaomond lattice with pentahedral and tetrahedral elements
- Defining the boundary conditions
- Coding the febio structure
- Running the model
- Importing and visualizing the displacement and stress results
Contents
Keywords
- febio_spec version 4.0
- febio, FEBio
- compression, tension, compressive, tensile
- displacement control, displacement boundary condition
- pentahedral penta6
- tetrahedral tet4
- cube, box, rectangular
- Lattice
- static, solid
- hyperelastic, Ogden
- displacement logfile
- stress logfile
clear; close all; clc;
Plot settings
fontSize=15; faceAlpha1=0.8; faceAlpha2=1; edgeColor=0.25*ones(1,3); edgeWidth=1.5; markerSize=25; markerSize2=10; cMap=gjet(4);
Control parameters
% Path names defaultFolder = fileparts(fileparts(mfilename('fullpath'))); savePath=fullfile(defaultFolder,'data','temp'); % Defining file names febioFebFileNamePart='tempModel'; febioFebFileName=fullfile(savePath,[febioFebFileNamePart,'.feb']); %FEB file name febioLogFileName=fullfile(savePath,[febioFebFileNamePart,'.txt']); %FEBio log file name febioLogFileName_disp=[febioFebFileNamePart,'_disp_out.txt']; %Log file name for exporting displacement febioLogFileName_force=[febioFebFileNamePart,'_force_out.txt']; %Log file name for exporting force febioLogFileName_stress=[febioFebFileNamePart,'_stress_out.txt']; %Log file name for exporting stress febioLogFileName_stiffness=[febioFebFileNamePart,'_stiffness_out.txt']; %Log file name for exporting stiffness %Geometry parameters sampleSize=10; nRepeat=3; strutThickness=0.3; %Set the strut thickness nSubPenta=2; %Number of subdivisions of the pentahedra in length direction latticePhaseType=1; % 1 = "bubble" centred, 2 = vertex centred, 3 = nested %Define applied displacement appliedStrain=0.3; %Linear strain (Only used to compute applied stretch) loadingOption='compression'; % or 'tension' switch loadingOption case 'compression' stretchLoad=1-appliedStrain; %The applied stretch for uniaxial loading case 'tension' stretchLoad=1+appliedStrain; %The applied stretch for uniaxial loading end displacementMagnitude=(stretchLoad*sampleSize)-sampleSize; %The displacement magnitude %Material parameter set E_youngs1=0.1; %Material Young's modulus nu1=0.4; %Material Poisson's ratio % FEA control settings numTimeSteps=10; %Number of time steps desired max_refs=25; %Max reforms max_ups=0; %Set to zero to use full-Newton iterations opt_iter=6; %Optimum number of iterations max_retries=5; %Maximum number of retires dtmin=(1/numTimeSteps)/100; %Minimum time step size dtmax=1/numTimeSteps; %Maximum time step size runMode='external';% 'internal' or 'external'
Create diamond lattice
[Ep,Et,V]=diamondLattice(sampleSize,nRepeat,strutThickness,latticePhaseType);
[Ep,V]=subPenta(Ep,V,nSubPenta,3); %Sub-divide pentahedra
Visualization of lattice meshes
% Convert tetrahedra and pentahedra to faces [Ft]=element2patch(Et,[],'tet4'); [Fp]=element2patch(Ep,[],'penta6');
cFigure; hold on; hpl=gpatch(Fp,V,'rw','r',0.5); hpl(end+1)=gpatch(Ft,V,'gw','g',0.5); legend(hpl,{'Pentahedral triangles','Pentahedra quads','Tetrahedral triangles'}); axisGeom; camlight headlight; drawnow;
DEFINE BC's
Z=V(:,3); logicTop=Z>=(max(Z(:))-eps(max(Z(:)))); logicBottom=Z<min(Z(:))+eps(min(Z(:))); bcPrescribeList=find(logicTop); bcSupportList=find(logicBottom);
cFigure; hold on; gpatch(Fp,V,'w','none',0.25); gpatch(Ft,V,'w','none',0.25); hl2(1)=plotV(V(bcPrescribeList,:),'r.','MarkerSize',markerSize); hl2(2)=plotV(V(bcSupportList,:),'k.','MarkerSize',markerSize); legend(hl2,{'BC prescribe','BC support'}); axisGeom; camlight headlight; drawnow;
Check porosity
vol_tet=sum(tetVol(Et,V)); %Volume of tetrahedra vol_penta=sum(pentaVol(Ep,V)); %Volume of pentahedra vol_lattice=vol_tet+vol_penta; %Total lattice volume porosity_lattice=vol_lattice./sampleSize.^3; %Porosity
Defining the FEBio input structure
See also febioStructTemplate and febioStruct2xml and the FEBio user manual.
%Get a template with default settings [febio_spec]=febioStructTemplate; %febio_spec version febio_spec.ATTR.version='4.0'; %Module section febio_spec.Module.ATTR.type='solid'; %Control section febio_spec.Control.analysis='STATIC'; febio_spec.Control.time_steps=numTimeSteps; febio_spec.Control.step_size=1/numTimeSteps; febio_spec.Control.solver.max_refs=max_refs; febio_spec.Control.solver.qn_method.max_ups=max_ups; febio_spec.Control.time_stepper.dtmin=dtmin; febio_spec.Control.time_stepper.dtmax=dtmax; febio_spec.Control.time_stepper.max_retries=max_retries; febio_spec.Control.time_stepper.opt_iter=opt_iter; %Material section materialName1='Material1'; febio_spec.Material.material{1}.ATTR.name=materialName1; febio_spec.Material.material{1}.ATTR.type='neo-Hookean'; febio_spec.Material.material{1}.ATTR.id=1; febio_spec.Material.material{1}.E=E_youngs1; febio_spec.Material.material{1}.v=nu1; % Mesh section % -> Nodes febio_spec.Mesh.Nodes{1}.ATTR.name='Object1'; %The node set name febio_spec.Mesh.Nodes{1}.node.ATTR.id=(1:size(V,1))'; %The node id's febio_spec.Mesh.Nodes{1}.node.VAL=V; %The nodel coordinates % -> Elements partName1='Part1'; febio_spec.Mesh.Elements{1}.ATTR.name=partName1; %Name of this part febio_spec.Mesh.Elements{1}.ATTR.type='penta6'; %Element type febio_spec.Mesh.Elements{1}.elem.ATTR.id=(1:1:size(Ep,1))'; %Element id's febio_spec.Mesh.Elements{1}.elem.VAL=Ep; %The element matrix partName2='Part2'; febio_spec.Mesh.Elements{2}.ATTR.name=partName2; %Name of this part febio_spec.Mesh.Elements{2}.ATTR.type='tet4'; %Element type febio_spec.Mesh.Elements{2}.elem.ATTR.id=size(Ep,1)+(1:1:size(Et,1))'; %Element id's febio_spec.Mesh.Elements{2}.elem.VAL=Et; %The element matrix % -> NodeSets nodeSetName1='bcSupportList'; febio_spec.Mesh.NodeSet{1}.ATTR.name=nodeSetName1; febio_spec.Mesh.NodeSet{1}.VAL=mrow(bcSupportList); nodeSetName2='bcPrescribeList'; febio_spec.Mesh.NodeSet{2}.ATTR.name=nodeSetName2; febio_spec.Mesh.NodeSet{2}.VAL=mrow(bcPrescribeList); %MeshDomains section febio_spec.MeshDomains.SolidDomain{1}.ATTR.name=partName1; febio_spec.MeshDomains.SolidDomain{1}.ATTR.mat=materialName1; febio_spec.MeshDomains.SolidDomain{2}.ATTR.name=partName2; febio_spec.MeshDomains.SolidDomain{2}.ATTR.mat=materialName1; %Boundary condition section % -> Fix boundary conditions febio_spec.Boundary.bc{1}.ATTR.name='zero_displacement_xyz'; febio_spec.Boundary.bc{1}.ATTR.type='zero displacement'; febio_spec.Boundary.bc{1}.ATTR.node_set=nodeSetName1; febio_spec.Boundary.bc{1}.x_dof=1; febio_spec.Boundary.bc{1}.y_dof=1; febio_spec.Boundary.bc{1}.z_dof=1; febio_spec.Boundary.bc{2}.ATTR.name='zero_displacement_xy'; febio_spec.Boundary.bc{2}.ATTR.type='zero displacement'; febio_spec.Boundary.bc{2}.ATTR.node_set=nodeSetName2; febio_spec.Boundary.bc{2}.x_dof=1; febio_spec.Boundary.bc{2}.y_dof=1; febio_spec.Boundary.bc{2}.z_dof=0; febio_spec.Boundary.bc{3}.ATTR.name='prescibed_displacement_z'; febio_spec.Boundary.bc{3}.ATTR.type='prescribed displacement'; febio_spec.Boundary.bc{3}.ATTR.node_set=nodeSetName2; febio_spec.Boundary.bc{3}.dof='z'; febio_spec.Boundary.bc{3}.value.ATTR.lc=1; febio_spec.Boundary.bc{3}.value.VAL=displacementMagnitude; febio_spec.Boundary.bc{3}.relative=0; %LoadData section % -> load_controller febio_spec.LoadData.load_controller{1}.ATTR.name='LC_1'; febio_spec.LoadData.load_controller{1}.ATTR.id=1; febio_spec.LoadData.load_controller{1}.ATTR.type='loadcurve'; febio_spec.LoadData.load_controller{1}.interpolate='LINEAR'; %febio_spec.LoadData.load_controller{1}.extend='CONSTANT'; febio_spec.LoadData.load_controller{1}.points.pt.VAL=[0 0; 1 1]; %Output section % -> log file febio_spec.Output.logfile.ATTR.file=febioLogFileName; febio_spec.Output.logfile.node_data{1}.ATTR.file=febioLogFileName_disp; febio_spec.Output.logfile.node_data{1}.ATTR.data='ux;uy;uz'; febio_spec.Output.logfile.node_data{1}.ATTR.delim=','; febio_spec.Output.logfile.node_data{2}.ATTR.file=febioLogFileName_force; febio_spec.Output.logfile.node_data{2}.ATTR.data='Rx;Ry;Rz'; febio_spec.Output.logfile.node_data{2}.ATTR.delim=','; % Plotfile section febio_spec.Output.plotfile.compression=0;
Quick viewing of the FEBio input file structure
The febView function can be used to view the xml structure in a MATLAB figure window.
febView(febio_spec); %Viewing the febio file
Exporting the FEBio input file
Exporting the febio_spec structure to an FEBio input file is done using the febioStruct2xml function.
febioStruct2xml(febio_spec,febioFebFileName); %Exporting to file and domNode
Running the FEBio analysis
To run the analysis defined by the created FEBio input file the runMonitorFEBio function is used. The input for this function is a structure defining job settings e.g. the FEBio input file name. The optional output runFlag informs the user if the analysis was run succesfully.
febioAnalysis.run_filename=febioFebFileName; %The input file name febioAnalysis.run_logname=febioLogFileName; %The name for the log file febioAnalysis.disp_on=1; %Display information on the command window febioAnalysis.runMode=runMode; febioAnalysis.maxLogCheckTime=10; %Max log file checking time [runFlag]=runMonitorFEBio(febioAnalysis);%START FEBio NOW!!!!!!!!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% --------> RUNNING/MONITORING FEBIO JOB <-------- 27-Apr-2023 13:48:28 FEBio path: /home/kevin/FEBioStudio2/bin/febio4 # Attempt removal of existing log files 27-Apr-2023 13:48:28 * Removal succesful 27-Apr-2023 13:48:28 # Attempt removal of existing .xplt files 27-Apr-2023 13:48:29 * Removal succesful 27-Apr-2023 13:48:29 # Starting FEBio... 27-Apr-2023 13:48:29 Max. total analysis time is: Inf s * Waiting for log file creation 27-Apr-2023 13:48:29 Max. wait time: 10 s * Log file found. 27-Apr-2023 13:48:29 # Parsing log file... 27-Apr-2023 13:48:29 number of iterations : 3 27-Apr-2023 13:48:29 number of reformations : 3 27-Apr-2023 13:48:29 ------- converged at time : 0.1 27-Apr-2023 13:48:29 number of iterations : 3 27-Apr-2023 13:48:29 number of reformations : 3 27-Apr-2023 13:48:29 ------- converged at time : 0.2 27-Apr-2023 13:48:29 number of iterations : 3 27-Apr-2023 13:48:30 number of reformations : 3 27-Apr-2023 13:48:30 ------- converged at time : 0.3 27-Apr-2023 13:48:30 number of iterations : 3 27-Apr-2023 13:48:30 number of reformations : 3 27-Apr-2023 13:48:30 ------- converged at time : 0.4 27-Apr-2023 13:48:30 number of iterations : 3 27-Apr-2023 13:48:30 number of reformations : 3 27-Apr-2023 13:48:30 ------- converged at time : 0.5 27-Apr-2023 13:48:30 number of iterations : 3 27-Apr-2023 13:48:30 number of reformations : 3 27-Apr-2023 13:48:30 ------- converged at time : 0.6 27-Apr-2023 13:48:30 number of iterations : 3 27-Apr-2023 13:48:30 number of reformations : 3 27-Apr-2023 13:48:30 ------- converged at time : 0.7 27-Apr-2023 13:48:30 number of iterations : 3 27-Apr-2023 13:48:31 number of reformations : 3 27-Apr-2023 13:48:31 ------- converged at time : 0.8 27-Apr-2023 13:48:31 number of iterations : 3 27-Apr-2023 13:48:31 number of reformations : 3 27-Apr-2023 13:48:31 ------- converged at time : 0.9 27-Apr-2023 13:48:31 number of iterations : 3 27-Apr-2023 13:48:31 number of reformations : 3 27-Apr-2023 13:48:31 ------- converged at time : 1 27-Apr-2023 13:48:31 Elapsed time : 0:00:02 27-Apr-2023 13:48:31 N O R M A L T E R M I N A T I O N # Done 27-Apr-2023 13:48:31 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Import FEBio results
if runFlag==1 %i.e. a succesful run
% Importing nodal displacements from a log file dataStruct=importFEBio_logfile(fullfile(savePath,febioLogFileName_disp),0,1); %Access data N_disp_mat=dataStruct.data; %Displacement timeVec=dataStruct.time; %Time %Create deformed coordinate set V_DEF=N_disp_mat+repmat(V,[1 1 size(N_disp_mat,3)]);
Importing nodal forces from a log file
dataStructForce=importFEBio_logfile(fullfile(savePath,febioLogFileName_force),0,1); F_applied=squeeze(sum(dataStructForce.data(bcPrescribeList,:,:),1))'; f_sum_x=F_applied(:,1); f_sum_y=F_applied(:,2); f_sum_z=F_applied(:,3);
Visualize force data
cFigure; hold on; xlabel('Time [s]','Interpreter','Latex'); ylabel('Force [N]','Interpreter','Latex'); hp1=plot(timeVec,f_sum_x,'r-','LineWidth',3); hp2=plot(timeVec,f_sum_y,'g-','LineWidth',3); hp3=plot(timeVec,f_sum_z,'b-','LineWidth',3); legend([hp1 hp2 hp3],{'$F_x$','$F_y$','$F_z$'},'Interpreter','Latex'); grid on; box on; axis square; axis tight; set(gca,'FontSize',fontSize); drawnow;
Plotting the simulated results using anim8 to visualize and animate deformations
DN_magnitude=sqrt(sum(N_disp_mat(:,:,end).^2,2)); %Current displacement magnitude % Create basic view and store graphics handle to initiate animation hf=cFigure; %Open figure gtitle([febioFebFileNamePart,': Press play to animate']); hp1=gpatch(Ft,V_DEF(:,:,end),DN_magnitude,'k',1); hp1.FaceColor='interp'; hp2=gpatch(Fp{1},V_DEF(:,:,end),DN_magnitude,'k',1); hp2.FaceColor='interp'; hp3=gpatch(Fp{2},V_DEF(:,:,end),DN_magnitude,'k',1); hp3.FaceColor='interp'; axisGeom(gca,fontSize); colormap(gjet(250)); colorbar; clim([0 max(DN_magnitude)]); axis(axisLim(V_DEF)); %Set axis limits statically camlight headlight; % Set up animation features animStruct.Time=timeVec; %The time vector for qt=1:1:size(N_disp_mat,3) %Loop over time increments DN_magnitude=sqrt(sum(N_disp_mat(:,:,qt).^2,2)); %Current displacement magnitude %Set entries in animation structure animStruct.Handles{qt}=[hp1 hp1 hp2 hp2 hp3 hp3]; %Handles of objects to animate animStruct.Props{qt}={'Vertices','CData','Vertices','CData','Vertices','CData'}; %Properties of objects to animate animStruct.Set{qt}={V_DEF(:,:,qt),DN_magnitude,V_DEF(:,:,qt),DN_magnitude,V_DEF(:,:,qt),DN_magnitude}; %Property values for to set in order to animate end anim8(hf,animStruct); %Initiate animation feature drawnow;
end
GIBBON www.gibboncode.org
Kevin Mattheus Moerman, [email protected]
GIBBON footer text
License: https://github.com/gibbonCode/GIBBON/blob/master/LICENSE
GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for image segmentation, image-based modeling, meshing, and finite element analysis.
Copyright (C) 2006-2022 Kevin Mattheus Moerman and the GIBBON contributors
This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.